Rerandomizable and Replayable Adaptive Chosen Ciphertext Attack Secure Cryptosystems Jens Groth BRICS, University of Aarhus Cryptomathic A/S.

Slides:



Advertisements
Similar presentations
STRONG security that fits everywhere. PROPRIETARY AND CONFIDENTIAL Analysis of NTRUEncrypt Paddings.
Advertisements

Perfect Non-interactive Zero-Knowledge for NP
Simulation-sound NIZK Proofs for a Practical Language and Constant Size Group Signatures Jens Groth University of California Los Angeles Presenter: Eike.
A Black-Box Construction of a CCA2 Encryption Scheme from a Plaintext Aware (sPA1) Encryption Scheme Dana Dachman-Soled University of Maryland.
ElGamal Security Public key encryption from Diffie-Hellman
CRYPTOGRAPHY AGAINST CONTINUOUS MEMORY ATTACKS Yevgeniy Dodis, Kristiyan Haralambiev, Adriana Lopez-Alt and Daniel Wichs MIT/MSR Reading Group NYU.
Anonymity-preserving Public-Key Encryption Markulf Kohlweiss Ueli Maurer, Cristina Onete, Björn Tackmann, and Daniele Venturi PETS 2013.
Probabilistic Public Key Encryption with Equality Test Duncan S. Wong Department of Computer Science City University of Hong Kong Joint work with Guomin.
SECURITY AND VERIFICATION
Vote privacy: models and cryptographic underpinnings Bogdan Warinschi University of Bristol 1.
Dan Boneh Public key encryption from Diffie-Hellman ElGamal Variants With Better Security Online Cryptography Course Dan Boneh.
Cryptography: Review Day David Brumley Carnegie Mellon University.
CS555Topic 191 Cryptography CS 555 Topic 19: Formalization of Public Key Encrpytion.
11 Provable Security. 22 Given a ciphertext, find the corresponding plaintext.
Encryption Public-Key, Identity-Based, Attribute-Based.
Malleability of Cryptosystems KEVIN ALLISON. Definitions.
Cramer & Shoup Encryption Cramer and Shoup: A practical public key crypto system provably secure against adaptive chosen ciphertext attack. Crypto 1998.
Lecture 3.3: Public Key Cryptography III CS 436/636/736 Spring 2012 Nitesh Saxena.
Sub-linear Zero-Knowledge Argument for Correctness of a Shuffle Jens Groth University College London Yuval Ishai Technion and University of California.
Optimal Structure-Preserving Signatures in Asymmetric Bilinear Groups Masayuki Abe, NTT Jens Groth, University College London Kristiyan Haralambiev, NYU.
Immunizing Encryption Schemes from Decryption Errors Cynthia Dwork Moni Naor Omer Reingold Weizmann Institute of ScienceMicrosoft Research.
Jens Groth BRICS, University of Aarhus Cryptomathic
1 IDENTITY BASED ENCRYPTION SECURITY NOTIONS AND NEW IBE SCHEMES FOR SAKAI KASAHARA KEY CONSTRUCTION N. DENIZ SARIER.
CMSC 414 Computer and Network Security Lecture 17 Jonathan Katz.
A Designer’s Guide to KEMs Alex Dent
Asymmetric Cryptography part 1 & 2 Haya Shulman Many thanks to Amir Herzberg who donated some of the slides from
1 How to securely outsource cryptographic computations Susan Hohenberger and Anna Lysyanskaya TCC2005.
CMSC 414 Computer and Network Security Lecture 16 Jonathan Katz.
Topics in Cryptography Lecture 4 Topic: Chosen Ciphertext Security Lecturer: Moni Naor.
Cryptography in Subgroups of Z n * Jens Groth UCLA.
1 Intro To Encryption Exercise 4. 2 Defining Pseudo-Random Permutation Let A be alg. with oracle to a function from {0,1} k to {0,1} k Notation: let A.
Strongly Secure Certificateless Encryption Alexander W. Dent Information Security Group
Non-interactive and Reusable Non-malleable Commitments Ivan Damgård, BRICS, Aarhus University Jens Groth, Cryptomathic A/S.
Anonymity and Robustness in Encryption Schemes Payman Mohassel University of Calgary.
Hybrid Signcryption with Outsider Security
ON THE PROVABLE SECURITY OF HOMOMORPHIC ENCRYPTION Andrej Bogdanov Chinese University of Hong Kong Bertinoro Summer School | July 2014 based on joint work.
1 CIS 5371 Cryptography 9. Data Integrity Techniques.
A Brief History of Provable Security and PKE Alex Dent Information Security Group Royal Holloway, University of London.
Dan Boneh Authenticated Encryption Chosen ciphertext attacks Online Cryptography Course Dan Boneh.
Dan Boneh Public Key Encryption from trapdoor permutations Public key encryption: definitions and security Online Cryptography Course Dan Boneh.
Cryptography Lecture 10 Arpita Patra. Quick Recall and Today’s Roadmap >> CPA & CPA-mult security >> Equivalence of CPA and CPA-mult security >> El Gamal.
Lecture 11 Chosen-Ciphertext Security Stefan Dziembowski MIM UW ver 1.0.
1 Lect. 13 : Public Key Encryption RSA ElGamal. 2 Shamir Rivest Adleman RSA Public Key Systems  RSA is the first public key cryptosystem  Proposed in.
Cryptography Lecture 11 Stefan Dziembowski
IND-CPA and IND-CCA Concepts Summary  Basic Encryption Security Definition: IND-CPA  Strong Encryption Security Definition: IND-CCA  IND-CPA, IND-CCA.
Dan Boneh Public key encryption from Diffie-Hellman The ElGamal Public-key System Online Cryptography Course Dan Boneh.
1 Lossy Trapdoor Functions and Their Applications Brent Waters SRI International Chris Peikert SRI International.
Cryptography: Review Day David Brumley Carnegie Mellon University.
Tae-Joon Kim Jong yun Jun
A New Paradigm of Hybrid Encryption Scheme Kaoru Kurosawa, Ibaraki Univ. Yvo Desmedt, UCL and FSU.
CRYPTOGRAPHIC HARDNESS OTHER FUNCTIONALITIES Andrej Bogdanov Chinese University of Hong Kong MACS Foundations of Cryptography| January 2016.
Cryptography Lecture 11 Arpita Patra. Generic Results in PK World  CPA-secure KEM  SKE COA-secure SKE  Hyb CPA-secure CPA SecurityCCA Security Bit.
1/28 Chosen-Ciphertext Security from Identity- Based Encryption Jonathan Katz U. Maryland Ran Canetti, Shai Halevi IBM.
1 Lossy Trapdoor Functions and Their Applications Brent Waters SRI International Chris Peikert SRI International.
Compact CCA-Secure Encryption for Messages of Arbitrary Length Presentation By: D. Vamsi Krishna CS09B006.
Cryptography Lecture 10 Arpita Patra © Arpita Patra.
111 Trading Plaintext-Awareness for Simulatability to Achieve Chosen Ciphertext Security Takahiro Matsuda ( ) Goichiro Hanaoka ( )
A plausible approach to computer-aided cryptographic proofs (a collection of thoughts) Shai Halevi – May 2005.
Cryptography Lecture 6 Arpita Patra. Quick Recall and Today’s Roadmap >> MAC for fixed-length messages >> Domain Extension for MAC >> Authenticated Encryption:
Attacks on Public Key Encryption Algorithms
Authenticated encryption
Group theory exercise.
Digital Signature Schemes and the Random Oracle Model
Cryptography Lecture 26.
Verifiable Oblivious Storage
Helger Lipmaa University of Tartu, Estonia
Cryptography Lecture 22.
Cryptography Lecture 25.
Presentation transcript:

Rerandomizable and Replayable Adaptive Chosen Ciphertext Attack Secure Cryptosystems Jens Groth BRICS, University of Aarhus Cryptomathic A/S

IND-CCA2 Pr[(pk,sk) K; (m 0,m 1 ) A O 1 (pk): A O 2 (E pk (m 0 ))=1] Exp 0: Exp 1: Pr[(pk,sk) K; (m 0,m 1 ) A O 1 (pk): A O 2 (E pk (m 1 ))=1] Where O 1 (y) = D sk (y) O 2 (y) = if y is challenge answer test else answer D sk (y) D sk (y) = invalid on bad ciphertext

RCCA Pr[(pk,sk) K; (m 0,m 1 ) A O 1 (pk): A O 2 (E pk (m 0 ))=1] Exp 0: Exp 1: Pr[(pk,sk) K; (m 0,m 1 ) A O 1 (pk): A O 2 (E pk (m 1 ))=1] Where O 1 (y) = D sk (y) O 2 (y) = if D sk (y) {m 0,m 1 } answer test else answer D sk (y) Canetti, Krawczyk, Nielsen: Replayable CCA security

Goal RCCA Rerandomizable Practical: anonymization Theoretical: targetted malleability Cryptosystem Reasons

Results O(|m|) exponentiations No security proof Standard model: Weak RCCA Semi-generic model: RCCA Cryptosystem Security argument

Weak RCCA Pr[(pk,sk) K; (m 0,m 1 ) A O 1 (pk): A O 2 (E pk (m 0 ))=1] Exp 0: Exp 1: Pr[(pk,sk) K; (m 0,m 1 ) A O 1 (pk): A O 2 (E pk (m 1 ))=1] Where O 1 (y) = D sk (y) O 2 (y) = if D sk (y) {m 0,m 1 } answer invalid else answer D sk (y) IND-CCA1 < WRCCA < RCCA < IND-CCA2

Cramer-Shoup pk = (g L, g R, h, c, d)G q Z p * sk = (x L, x R, k L, k R, l L, l R ) h = g L x L = g R x R c = g L k L g R k R, d = g L l L g R l R E pk (m;r) = (g L r, g R r, h r m, (cd H ) r ) H = hash(u L,u R,v) D sk (u L,u R,v, α ) if α = u L k L +Hl L u R k R +Hl R return m = vu R -x R else return invalid

WRCCA cryptosystem pk = (g L,1, g R,1, h 1,..., g L,k, g R,k, h k, c, d) sk = (x L,1,..., x L,k, k L,1, l L,1,..., k R,k, l R,k ) h i = g L,i x L,i, c = g L,i k L,i g R,i k R,i, d = g L,i l L,i g R,i l R,i m = m 1...m k{-1,1} k, H = hash(m) E(m;r)=(g L,1 r, g R,1 r, h 1 m 1 r,...,g L,k r, g R,k r, h k m k r, (cd H ) r ) D(u L,1, u R,1, v 1,..., u L,k, u R,k, v k, α ) if α = u L,i k L,i +Hl L,i u R,i k R,i +Hl R,i return m else return invalid Rerandomization (u L,1 s, u R,1 s, v 1 s,..., u L,k s, u R,k s, v k s, α s )

–(pk, sk) K –(m 0, m 1 ) A(pk) –(u L,1, u R,1, v 1,...,u L,k, u R,k, v k, α ) = (g L,1 r, g R,1 r, h 1 m b,1 r,...,g L,k r, g R,k r, h k m b,k r, (cd H ) r ) –Query O 2 (u L,1 g L,1, u R,1 g R,1, v 1 h 1 m 0,1,..., α cd hash(m 0 ) ) if test return 0 if invalid return 1 RCCA attack

RCCA cryptosystem PK = (pk WRCCA, pk Hom )WRCCA: G n Z p * SK = (sk WRCCA, sk Hom ) E PK (m;r,R,Z) = (u L,1, u R,1, v 1,..., α Z, E Hom (Z;R)) E WRCCA (m;r) = (u L,1, u R,1, v 1,..., α ) D SK (u L,1, u R,1, v 1,..., β, y) if β = ( u L,i k L,i +Hl L,i u R,i k R,i +Hl R,i ) Z return m else return invalid Rerandomization (u L,1 s, u R,1 s, v 1 s,..., β sz, y z E Hom (0;S))

Semi-generic model (Encrypt, m) = y, store (y, m) (Add, y, y') = y'' store (y'', m+m') if (m, y) and (m', y') stored (Decrypt, y) = m if (m, y) stored Idealized homomorphic encryption

Open problems Semi-generic model: Practical RCCA cryptosystem Standard model: RCCA cryptosystem Both models: Other forms of targetted malleability example: homomorphic cryptosystems