1 / 10 Comparison between Microwave and Hard X-ray Spectral Indices of Temporally and Spatially Resolved Non-Thermal Sources Kiyohara, J., Takasaki, H.,

Slides:



Advertisements
Similar presentations
NBYM 2006 A major proton event of 2005 January 20: propagating supershock or superflare? V. Grechnev 1, V. Kurt 2, A. Uralov 1, H.Nakajima 3, A. Altyntsev.
Advertisements

Masuda Flare: Remaining Problems on the Looptop Impulsive Hard X-ray Source in Solar Flares Satoshi Masuda (STEL, Nagoya Univ.)
THE IMPULSIVE X-RAY RESPONSE IN FLARE FOOTPOINTS TOMASZ MROZEK WROCLAW UNIWERSITY ASTRONOMICAL INSTITUTE POLAND.
Thick Target Coronal HXR Sources Astrid M. Veronig Institute of Physics/IGAM, University of Graz, Austria.
Microwave and hard X-ray imaging observations of energetic electrons in solar flares: event of 2003 June 17 Kundu, M R., Schmahl, E J, and White, S M.
Solar flare hard X-ray spikes observed by RHESSI: a statistical study Jianxia Cheng Jiong Qiu, Mingde Ding, and Haimin Wang.
Multi-Wavelength Studies of Flare Activities with Solar-B ASAI Ayumi Kwasan Observatory, Kyoto University Solar-B Science February 4, 2003.
Low-Energy Coronal Sources Observed with RHESSI Linhui Sui (CUA / NASA GSFC)
Relations between concurrent hard X-ray sources in solar flares M. Battaglia and A. O. Benz Presented by Jeongwoo Lee NJIT/CSTR Journal Club 2007 October.
RHESSI 2003 October 28 Time Histories Falling fluxes following the peak Nuclear/511 keV line flux delayed relative to bremsstrahlung Fit to 511 keV line.
Hard X-rays associated with CMEs H.S. Hudson, UCB & SPRC Y10, Jan. 24, 2001.
24 Oct 2001 A Cool, Dense Flare T. S. Bastian 1, G. Fleishman 1,2, D. E. Gary 3 1 National Radio Astronomy Observatory 2 Ioffe Institute for Physics and.
X-Ray Observation and Analysis of a M1.7 Class Flare Courtney Peck Advisors: Jiong Qiu and Wenjuan Liu.
Working Group 2 - Ion acceleration and interactions.
9th RHESSI Workshop, Sept. 1-5, 2009, Genova On Broken-up Spectra of RHESSI Flares Y. P. Li & W. Q. Gan Purple Mountain Observatory.
Hard X-ray footpoint statistics: spectral indices, fluxes, and positions Pascal Saint-Hilaire 1, Marina Battaglia 2, Jana Kasparova 3, Astrid Veronig 4,
White-Light Flares: TRACE and RHESSI Observations H. Hudson (UCB), J. Wolfson (LMSAL) & T. Metcalf (CORA)
Measuring the Temperature of Hot Solar Flare Plasma with RHESSI Amir Caspi 1,2, Sam Krucker 2, Robert P. Lin 1,2 1 Department of Physics, University of.
FLARE ENERGETICS:TRACE WHITE LIGHT AND RHESSI HARD X-RAYS* L. Fletcher (U. Glasgow), J. C. Allred (GSFC), I. G. Hannah (UCB), H. S. Hudson (UCB), T. R.
3 November 2003 event HXR/Gamma-ray and radio observations Rhessi_workshop.
Uses of solar hard X-rays Basics of observations Hard X-rays at flare onset The event of April 18, 2001 Conclusions Yohkoh 10th Jan. 21, 2002Hugh Hudson,
ISSI Workshop, October 3-6, Yohkoh statistical studies Michał Tomczak Astronomical Institute, University of Wrocław, Poland.
Late-phase hard X-ray emission from flares The prototype event (right): March 30, 1969 (Frost & Dennis, 1971), a very bright over-the-limb event with a.
RHESSI 4-8 April 06 Origin of > 100 GHz radio emission Gérard Trottet Laboratoire d’Etudes Spatiale et d’Instrumentation en Astrophysique (LESIA) Observatoire.
Constraints on Particle Acceleration from Interplanetary Observations R. P. Lin together with L. Wang, S. Krucker at UC Berkeley, G Mason at U. Maryland,
Radio Emission from Masuda Sources New Jersey Institute of Technology Sung-Hong Park.
White-Light Flares via TRACE and RHESSI: Death to the thick target? H. Hudson, plus collaboration with J. Allred, I. Hannah, L. Fletcher, T. Metcalf, J.
SPATIALLY RESOLVED MINUTE PERIODICITIES OF MICROWAVE EMISSION DURING A STRONG SOLAR FLARE Kupriyanova E. 1,Melnikov V. 1, Shibata K. 2,3, Shibasaki K.
Electron Acceleration and Transport in Microwave Flaring Loops V. Melnikov (Radiophysical Research Institute, Russia) Nobeyama Symposium, October.
Spatially Resolved Spectral Analysis of Gradual Hardening Flare Takasaki H., Kiyohara J. (Kyoto Univ.), Asai A., Nakajima H. (NRO), Yokoyama T. (Univ.
Evolution of Flare Ribbons and Energy Release Rate Ayumi Asai 1,2, T. Yokoyama T. 3, M. Shimojo 2, S. Masuda 4, and K. Shibata 1 1:Kwasan and Hida Observatories,
Thermal, Nonthermal, and Total Flare Energies Brian R. Dennis RHESSI Workshop Locarno, Switzerland 8 – 11 June, 2005.
Multiwavelength observations of a partially occulted solar flare Laura Bone, John C.Brown, Lyndsay Fletcher.
The Relation between Soft X-ray Ejections and Hard X-ray Emission on November 24 Flare H. Takasaki, T. Morimoto, A. Asai, J. Kiyohara, and K. Shibata Kwasan.
Fine Structure inside Flare Ribbons and its Temporal Evolution ASAI Ayumi 1, Masuda S. 2, Yokoyama T. 3, Shimojo M. 3, Kurokawa H. 1, Shibata, K. 1, Ishii.
RHESSI and Radio Imaging Observations of Microflares M.R. Kundu, Dept. of Astronomy, University of Maryland, College Park, MD G. Trottet, Observatoire.
Coronal hard X-ray sources and associated decimetric/metric radio emissions N. Vilmer D. Koutroumpa (Observatoire de Paris- LESIA) S.R Kane G. Hurford.
Simultaneous monitoring observations of solar active regions at millimeter wavelengths at radio telescopes RT-7.5 BMSTU (Russia) and RT-14 Metsahovi radio.
NBYM04 Introduction 1.“Symposium on Nobeyama Radioheliograph” –1990 November NRO 2.“Kofu symposium – New look at the Sun with emphasis on advanced.
High-Energy Emission from a Solar Flare in Hard X-Rays and Microwaves M R Kundu 1, V V Grechnev 2, S M White 1, E J Schmahl 1, N S Meshalkina 2, L K Kashapova.
Studies on the 2002 July 23 Flare with RHESSI Ayumi ASAI Solar Seminar, 2003 June 2.
2.2. The Flare Configuration Flare Ribbons and HXR Sources Overall Course of the Event Hard X-Ray Morphology M R Kundu 1, V V Grechnev 2, S M White 1,
ASAI Ayumi Kwasan Observatory, Kyoto University July 12, Evolution of Flare Ribbons and Energy Release.
Evolution of Flare Ribbons and Energy Release Rate Ayumi ASAI 1, Takaaki YOKOYAMA 2, Masumi SHIMOJO 3, Satoshi MASUDA 4, and Kazunari SHIBATA 1 1:Kwasan.
NoRH Observations of RHESSI Microflares M.R. Kundu, Dept. of Astronomy, University of Maryland, College Park, MD E.J.Schmahl, Dept. of Astronomy, University.
Joint session WG4/5 Points for discussion: - Soft-hard-soft spectral behaviour – again - Non-thermal pre-impulsive coronal sources - Very dense coronal.
Probing Electron Acceleration with X-ray Lightcurves Siming Liu University of Glasgow 9 th RHESSI Workshop, Genova, Italy, Sep
Flare-Associated Oscillations Observed with NoRH Ayumi Asai (NSRO) Nobeyama Symposium 2004 : 2004/10/26.
Flare Ribbon Expansion and Energy Release Ayumi ASAI Kwasan and Hida Observatories, Kyoto University Explosive Phenomena in Magnetized Plasma – New Development.
Microwave emission from the trapped and precipitated electrons in solar bursts J. E. R. Costa and A. C. Rosal1 2005, A&A, 436, 347.
Coronal X-ray Emissions in Partly Occulted Flares Paula Balciunaite, Steven Christe, Sam Krucker & R.P. Lin Space Sciences Lab, UC Berkeley limb thermal.
OBSERVATION OF MICROWAVE OSCILLATIONS WITH SPATIAL RESOLUTION V.E. Reznikova 1, V.F. Melnikov 1, K. Shibasaki 2, V.M. Nakariakov 3 1 Radiophysical Research.
2. Data3. Results full disk image (H  ) of the flare (Sartorius Telescope) NOAA Abstract Preflare Nonthermal Emission Observed in Microwave and.
Evolution of Flare Ribbons and Energy Release Ayumi ASAI 1, Takaaki YOKOYAMA 2, Masumi SHIMOJO 3, Satoshi MASUDA 4, Hiroki KUROKAWA 1, and Kazunari SHIBATA.
Coronal hard X-ray sources and associated radio emissions N. Vilmer D. Koutroumpa (Observatoire de Paris- LESIA; Thessaloniki University) S.R Kane G. Hurford.
Discovery of Relativistic Positrons in Solar Flares with Microwave Imaging and Polarimetry Gregory D. Fleishman, Alexander T. Altyntsev, Natalia S. Meshalkina.
Dong Li Purple Mountain Observatory, CAS
Two Years of NoRH and RHESSI Observations: What Have We Learned
Evolution of Flare Ribbons and Energy Release Ayumi Asai1,
Evolution of Flare Ribbons and Energy Release
Evolution of Flare Ribbons and Energy Release Ayumi Asai (浅井 歩)1,
Evolution of Flare Ribbons and Energy Release
Origin of > 100 GHz radio emission
Radio Signatures of Coronal Magnetic Fields and Reconnections
Flare Ribbon Expansion and Energy Release
Evolution of Flare Ribbons and Energy Release
The spectral evolution of impulsive solar X-ray flares
Nonthermal Electrons in an Ejecta Associated with a Solar Flare
Downflow as a Reconnection Outflow
Periodic Acceleration of Electrons in Solar Flares
Presentation transcript:

1 / 10 Comparison between Microwave and Hard X-ray Spectral Indices of Temporally and Spatially Resolved Non-Thermal Sources Kiyohara, J., Takasaki, H., Narukage, N. (Kyoto Univ.), Masuda, S. (STE Lab., Nagoya Univ.), Nakajima, H. (NRO/NAOJ) Yokoyama, T. (Univ. Tokyo) Nobeyama Symposium Kiyosato

2 / 10 Introduction Non-thermal emission of flares are frequently observed simultaneously by microwave and hard X-rays. The time profiles of these frequencies are similar with each other. (Kundu 1961) These observations suggest that the electrons emitting microwave and HXRs belong to the same population in each event. However, it is observed that the indices of the power-law fit to the distribution functions in microwave and HXRs differ (Kundu et al 1994.; Silva et al. 1999; Raulin et al. 1998). In order to study this, we analyzed simultaneous observations of flares by NoRH, NoRP, and Yohkoh/HXT. The advantage of these observations is that they are spatially and temporally resolved.

3 / 10 Data Instruments –Yohkoh Hard X-ray Telescope (HXT) –Nobeyama Radioheliograph (NoRH) –Nobeyama Radio Polarimeters (NoRP) Event Selection – > 30 cts/s/SC in M2-band of HXT – (source size)/(beam size) >4 in NoRH image – 15 events analyzed in total

4 / 10 Power-law indices Power-law index in HXR spectrum –Assume the thick-target model –Electron index  x Power-law index in microwave spectrum –Observed NoRP spectrum is fitted by the broken- power-law model. –Taking the intensity ratio in different frequency obtained by NoRH –Only optically-thin part (high-frequency part) –Using Dulk’s (1985) fitting function –Electron index  m

5 / 10 Group 1 8 of 15 events Impulsive ( < 10min.) Power-law indices have similar values at the HXR peak Spatially compact in microwave HXT H-band 01:4401:52 29-Oct-2000 NoRP 17GHz xx mm

6 / 10 Group 2 3 of 15 events Gradual ( > 10 min.) Power-law indices show little change temporally Relatively large scale in microwave HXT H-band 03:2003:44 03-Apr-2001 NoRP 35GHz xx mm

7 / 10 Group 3 4 of 15 events HXT H-band 05:3805:43 28-Nov-1998 NoRP 17GHz xx mm

8 / event The HXR source is located at the part where the microwave spectrum is softer. HXR NoRH 34GHz Intensity NoRH spectral index SoftHard

9 / 10 HXR vs Microwave The HXR sources seem to be located at the part where the microwave spectrum is softer in general

10 / 10 Summary & Discussion Power-law indices  m and  x of electron distribution functions are derived from the microwave and hard X-rays spectra, respectively, in the impulsive phase of the selected events as functions of time and position. We found: 1. The selected events are categorized in three types by the temporal behavior of the delta. 2.The microwave spectrum near the footpoints is softer than that near the looptop. 3.Hard X-ray sources seem to be located at the area where such softer microwave spectra are seen. The previous studies show by using spatially-unresolved data that  x is generally larger than  m. Our findings, however, suggest that the previous results are because of the relatively weighted signal of microwave from the loop top which is emitted by trapped electrons. There still remains a possibility that the electron power indices have a single value from hard X-ray emitting energy around 100keV up to microwave emitting energy, which is believed to be > 0.3 MeV.