Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Section 3 What is Energy? Objectives Explain the relationship between.

Slides:



Advertisements
Similar presentations
Energy. What is Energy? Energy is the ability to cause change Any time you move, or move something you are using energy.
Advertisements

Matter & Energy #2 1.Kinetic & Potential Energy 2.Energy Sources & Alternatives.
〉 What is the relationship between energy and work? 〉 Whenever work is done, energy is transformed or is transferred from one system to another system.
Potential and Kinetic Energy
The Nature of Energy An unbalanced force must be applied to an object to change its motion. Work is the force over a distance. Energy is the ability to.
Forms and Transformations
WORK.
SI ENERGY TYPES AND TRANSFORMATIONS. HOW ARE WORK AND ENERGY RELATED? When work is done, energy is transferred to an object (or system). Energy is the.
Chapter 4. The nature of energy Energy: The ability to do work or cause change All energy involves either motion or position Where are we using energy.
What is Energy? Energy is the ability to do work In other words, energy is transferred by a force moving an object through a distance (Work = Force x Distance)
Unit 3 Section 2 Notes What is Energy?. Energy and Work 0 Energy can be defined as: the ability to do work 0 Most of the time we can’t see energy but.
Energy and Conservation Physics Chapter 5-2 (p ) Chapter 5-3 (p )
Chapter 13: Work and Energy
P. Sci. Unit 4 Chapter 15 Energy. Energy and Work Whenever work is done, energy is transformed or transferred to another system. Energy is the ability.
What is Energy? In the chapter on matter, you learned that matter and energy is conserved. Instead of being created or destroyed, it is just changed from.
Chapter 15 Energy 15.1 Energy and Its Forms. How are energy and work related? Energy is the ability to do work. Energy and Work Work is a transfer of.
Energy Key Ideas What is the relationship between energy and work?
Work and Energy Ch. 9.3 What is Energy?.
Chapter 12: Work & Energy Section 2 – What is energy ?
What is Energy?.
Chapter 15 Sections 1-2.  Energy is the ability to do work.  Energy is measured in Joules, just like work.
WHAT IS ENERGY?. ENERGY ENERGY: ability to do work. Whenever work is done, energy is transformed or transferred to another system. SI Units: joules (J)
Forms and Transformations
Physical Science Chapter 15
Energy Types and Transformations SI. How are work and energy related? When work is done, energy is transferred to an object (or system). Energy is the.
Physical Science Chapter 5 Energy & Power. 5.1 The Nature of Energy Energy – the ability to do work or cause a change. Energy – the ability to do work.
P. Sci. Unit 4 Chapter 15 Energy. Energy and Work Whenever work is done, energy is transformed or transferred to another system. Energy is the ability.
Section 3Work and Energy Section 3: What is Energy? Preview Key Ideas Bellringer Energy and Work Potential Energy Math Skills Kinetic Energy Other Forms.
Section 3Work and Energy Energy Chapter Section 3Work and Energy Energy and Work 〉 What is energy? 〉 energy: the capacity to do work 〉 Energy is.
Section 3Work and Energy Bellringer You should already have learned that energy is always conserved. Instead of being created or destroyed, energy just.
Energy. What the heck is energy anyway? EnergyEnergy- the ability to do work If an object or organism does work (exerts a force over a distance to move.
Energy Chapter 15.
CHAPTER 13.3 AND 13.4 ENERGY. Section 13.3 Energy Objective 1: What is the relationship between energy and work? Objective 2: Identify the energy of position.
Ch Energy I. Energy and Work (p )  Energy and Work  Energy  Conservation of Energy.
Section 1 Work, Power, and Machines Objectives Define work and power. Calculate the work done on an object and the rate at which work is done. Use the.
Table of Contents What Is Energy? Forms of Energy Energy Transformations and Conservation Temperature, Thermal Energy, and Heat The Transfer of Heat Energy.
EQ – How is life affected by energy? S8CS2 (Habits of Mind) & S8CS8 (Nature of Science) S8P2. Students will be familiar with the forms and transformations.
Energy. KEY CONCEPTS How are energy and work related? What factors does the kinetic energy of an object depend on? How is gravitational potential energy.
TABLE OF CONTENTS SECTION 1 : WORK, POWER, AND MACHINES SECTION 2 : SIMPLE MACHINES SECTION 3 : WHAT IS ENERGY? SECTION 4 : CONSERVATION OF ENERGY Chapter.
1. 2 Work: done ONLY when a force is applied to an object, and the object moves IN THE SAME DIRECTION OF THE APPLIED FORCE Work is calculated by multiplying.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Section 1 Work Chapter 5 Definition of Work Work is done on an object.
Energy Chapter 15. Science Journal Entry 22 Describe two types of energy (energy sources for humans) and what you believe are the advantages and disadvantages.
Section 3Work and Energy Energy and Work 〉 What is the relationship between energy and work? 〉 Whenever work is done, energy is transformed or is transferred.
P. Sci. Unit 4 Chapter 15 Energy. Energy and Work Whenever work is done, energy is transformed or transferred to another system. Energy is the ability.
Warm Up Explain what happens when an acid & base combine. 1.The type of reaction 2.The products created Agenda Homework 1. Neutralization 2. Salt + water.
WORK, POWER, AND MACHINES 9.1. WORK  A quantity that measures the effects of a force acting over a distance  Work = force x distance  W = Fd.
Energy. Energy and Work Energy – the ability to do work Work is a transfer of energy Energy is also measured in Joules.
Unit 9: Energy, Work, and Power Forms of Energy and Energy Transformations Indicators PS-6.1: Explain how the law of conservation of energy applies to.
Chapter 13 Work & Energy.
P. Sci. Unit 4 Chapter 15 Energy.
Section 3: What is Energy?
Chapter 15: Energy Kinetic & Potential energy
Chapter 13 Work & Energy.
Section 1: Work, Power, and Machines
ENERGY Chapter 5 Test Review Tolle Tuesday, November 20, 2018.
Nature of Energy Chapter 4.1.
Glencoe: Chapter 5 Sections 1 and 2 Pages Pages
Energy is not a substance! Energy has no direction!
Physical Science Chapter 3
In an avalanche, a mass of loose snow, soil, or rock suddenly gives way and slides down the side of a mountain. The avalanche releases a great amount of.
Chapter 9 Section 3 Notes What is Energy?.
Energy and Work How are energy and work related?
Section 3: What is Energy?
Energy What is energy?.
Section 3: What is Energy?
Physical Science Chapter 13 Section 3
P. Sci. Unit 4 Chapter 15 Energy.
Section 3: What is Energy?
Chapter 15.1 Energy.
Presentation transcript:

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Section 3 What is Energy? Objectives Explain the relationship between energy and work. Define potential energy and kinetic energy. Calculate kinetic energy and gravitational potential energy. Distinguish between mechanical and nonmechan- ical energy. Chapter 12

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Bellringer In the chapter on matter, you learned that energy is conserved. Instead of being created or destroyed, it is just changed from one form to another. The energy of the sunlight that reaches Earth is the ultimate source of most of the energy around us. Look at the illustration below, and identify the types of energy involved. Section 3 What is Energy? Chapter 12

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Bellringer, continued 1. How did energy from sunlight provide the energy the girl needed to swing the bat? (Hint: What do you need to have energy?) 2. When the girl hits the ball, she exerts a force on it. Does she do work on the ball in the scientific sense of the term? Explain why. 3. After the girl hits the ball, the ball moves very fast and has energy. When the ball hits the fielder’s glove, it stops moving. Given that energy can never be destroyed but merely changes form, what happened to the energy the ball once had? (Hint: If you are the fielder, what do you hear and feel as you catch the ball?) Section 3 What is Energy? Chapter 12

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Energy and Work Energy is the ability to do work. When you do work on an object, you transfer energy to that object. Whenever work is done, energy is transformed or transferred to another system. Energy is measured in joules. Because energy is a measure of the ability to do work, energy and work are expressed in the same units. Section 3 What is Energy? Chapter 12

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Potential Energy The energy that an object has because of the position, shape, or condition of the object is called potential energy. Potential energy is stored energy. Elastic potential energy is the energy stored in any type of stretched or compressed elastic material, such as a spring or a rubber band. Gravitational potential energy is the energy stored in the gravitational field which exists between any two or more objects. Section 3 What is Energy? Chapter 12

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Potential Energy Section 3 What is Energy? Chapter 12

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Potential Energy, continued Gravitational potential energy depends on both mass and height. Gravitational Potential Energy Equation grav. PE = mass  free-fall acceleration  height PE = mgh The height can be relative. The height used in the above equation is usually measured from the ground. However, it can be a relative height between two points, such as between two branches in a tree. Section 3 What is Energy? Chapter 12

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Math Skills Gravitational Potential Energy A 65 kg rock climber ascends a cliff. What is the climber’s gravitational potential energy at a point 35 m above the base of the cliff? 1. List the given and unknown values. Given:mass, m = 65 kg height, h = 35 m free-fall acceleration, g = 9.8 m/s 2 Unknown:gravitational potential energy, PE = ? J Section 3 What is Energy? Chapter 12

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Math Skills, continued 2. Write the equation for gravitational potential energy. Section 3 What is Energy? Chapter 12 PE = mgh 3. Insert the known values into the equation, and solve. PE = (65 kg)(9.8 m/s 2 )(35 m) PE = 2.2  10 4 kgm 2 /s 2 PE = 2.2  10 4 J

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Kinetic Energy The energy of a moving object due to the object’s motion is called kinetic energy. Kinetic energy depends on mass and speed. Kinetic Energy Equation Kinetic energy depends on speed more than mass. Section 3 What is Energy? Chapter 12

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Kinetic Energy Graph Section 3 What is Energy? Chapter 12

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Kinetic Energy Section 3 What is Energy? Chapter 12

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Math Skills Kinetic Energy What is the kinetic energy of a 44 kg cheetah running at 31 m/s? 1. List the given and unknown values. Given:mass, m = 44 kg speed, v = 31 m/s Unknown:kinetic energy, KE = ? J Section 3 What is Energy? Chapter 12

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Math Skills, continued 2. Write the equation for kinetic energy. 3. Insert the known values into the equation, and solve. Section 3 What is Energy? Chapter 12

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Other Forms of Energy The amount of work an object can do because of the object’s kinetic and potential energies is called mechanical energy. Mechanical energy is the sum of the potential energy and the kinetic energy in a system. In addition to mechanical energy, most systems contain nonmechanical energy. Nonmechanical energy does not usually affect systems on a large scale. Section 3 What is Energy? Chapter 12

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Other Forms of Energy, continued Atoms and molecules have kinetic energy. The kinetic energy of particles is related to heat and temperature. Chemical reactions involve potential energy. The amount of chemical energy associated with a substance depends in part on the relative positions of the atoms it contains. Living things get energy from the sun. Plants use photosynthesis to turn the energy in sunlight into chemical energy. Section 3 What is Energy? Chapter 12

Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Other Forms of Energy, continued The sun gets energy from nuclear reactions. The sun is fueled by nuclear fusion reactions in its core. Electricity is a form of energy. Electrical energy is derived from the flow of charged particles, as in a bolt of lightning or in a wire. Light can carry energy across empty space. Light energy travels from the sun to Earth across empty space in the form of electromagnetic waves. Section 3 What is Energy? Chapter 12