000509EISPDR_SciInvGIs.1 EIS Performance and Operations Louise Harra Mullard Space Science Laboratory University College London.

Slides:



Advertisements
Similar presentations
The Science of Solar B Transient phenomena – this aim covers the wide ranges of explosive phenomena observed on the Sun – from small scale flaring in the.
Advertisements

EIS/Solar-B: 3. Electrical Interface to MDP EISMDP PIM HK PIM DHU DR analog data (temperature, current, etc.) S/C bus image compression status data command.
T. Berger Solar-B FPP Solar & Astrophysics Laboratory FPP Overview NRL Meeting 18-Nov FPP Science Goals 2. Level 0 Requirements 3. FPP Instrument.
XRT Instrument Capabilities Ed DeLuca, Leon Golub & Jay Bookbinder SAO.
General Astrophysics with TPF-C David Spergel Princeton.
Evolution of Magnetic Setting in Flare Productive Active Regions Yixuan Li Space Weather Research Lab New Jersey Institute of Technology.
Hinode/EIS Data Products and Archive Access Jian Sun (MSSL)
Physical characteristics of selected X-ray events observed with SphinX spectrophotometer B. Sylwester, J. Sylwester, M. Siarkowski Space Research Centre,
Initial Results of EIS Shinsuke Imada (NAOJ) EIS Team.
Workshop „X-ray Spectroscopy and Plasma Diagnostics from the RESIK, RHESSI and SPIRIT Instruments”, 6 – 8 December 2005, Wrocław Spectroscopy Department.
Flare Luminosity and the Relation to the Solar Wind and the Current Solar Minimum Conditions Roderick Gray Research Advisor: Dr. Kelly Korreck.
Instrument Checkout / Performance Verification for XRT & Control of XRT Observation R. Kano for the XRT Team.
Hinode’s Extreme ultraviolet Imaging Spectrometer (EIS) Data acquisition and calibration primer Presented by Jason Scott.
990901EIS_Opt.1 The Instrument: Optical Design Dr. John T. Mariska Data Coordination Scientist Naval Research Laboratory
Science With the Extreme-ultraviolet Spectrometer (EIS) on Solar-B by G. A. Doschek (with contributions from Harry Warren) presented at the STEREO/Solar-B.
000509EISPDR_SciInvGIs.1 EIS Science Goals: The First Three Months…. Louise Harra Mullard Space Science Laboratory University College London.
2006/4/17Extended Solar-B mission onboard control and data handling (data recorder, downlinks, observation tables…) Toshifumi Shimizu ISAS/JAXA.
XRT X-ray Observations of Solar Magnetic Reconnection Sites
Solar-B XRT XRT-1 The Science and Capability of the Solar-B / X-Ray Telescope Solar-B XRT Presenter: Ed DeLuca Smithsonian Astrophysical Observatory.
The Solar-B EUV Imaging Spectrometer: an Overview of EIS J. L. Culhane Mullard Space Science Laboratory University College London.
SDO Project Science Team 1 The Science of SDO. SDO Project Science Team 2 Sensing the Sun from Space  High-resolution Spectroscopy for Helioseismology.
Magnetic Field Measurements from Solar-B Information shown here is from Solar-B team (including Drs Ichimoto, Kosugi, Shibata, Tarbell, and Tsuneta)
990901EIS_RR_Science.1 Science Investigation Goals and Instrument Requirements Dr. George A. Doschek EIS US Principal Investigator Naval Research Laboratory.
METHOD OF DEM ESTIMATION 1.Generating “true” model observations. We start with the XRT temperature response functions R c (T) and a coronal emission model.
New Views of the Solar Corona with Hinode X-Ray Telescope (XRT) Taro Sakao (ISAS/JAXA) and the XRT Team (ISAS/JAXA, SAO, NAOJ, NASA/MSFC)
Science Specification of SOLAR-C payload SOLAR-C Working Group 2012 July 23.
Solar-B Mission Preparation Len Culhane – UK EIS Principal Investigator Louise Harra – UK Project Scientist David Williams – UK EIS Chief Observer Mullard.
Solar-B/EIS high-cadence observation for diagnostics of the corona and TR S. Kamio (Kyoto Univ.) Solar-B domestic meeting.
1 Future solar missions (Based on the summary by R.A. Harrison) S. Kamio
Co-spatial White Light and Hard X-ray Flare Footpoints seen above the Solar Limb: RHESSI and HMI observations Säm Krucker Space Sciences Laboratory, UC.
EIS - MSSL/NRL EUV Imaging Spectrometer SOT - ISAS/NAOJ Solar Optical Telescope XRT - SAO/ISAS X-ray Telescope FPP - Lockheed/NAOJ Focal Plane Package.
Hinode: A New Solar Observatory in Space H. Hara ( NAOJ/NINS) and the Hinode team 2007 Dec 8.
By: Kiana and Meagan. Purpose  To measure solar magnetic fields  To understand how energy generated by magnetic-field changes in the lower solar atmosphere.
Solar observation modes: Commissioning and operational C. Vocks and G. Mann 1. Spectrometer and imaging modes 2. Commissioning proposals 3. Operational.
STATUS REPORT OF FPC SPICA Task Force Meeting March 29, 2010 MATSUMOTO, Toshio (SNU)
High Resolution Imaging and EUV spectroscopy for RHESSI Microflares S. Berkebile-Stoiser 1, P. Gömöry 1,2, J. Rybák 2, A.M. Veronig 1, M. Temmer 1, P.
An Overview of the Swift Observatory Liz Puchnarewicz Mullard Space Science Laboratory University College London.
Spectroscopy Department Lebedev Physical Institute Moscow Solar Extreme Events: Fundamental Science and Applied Aspects (SEE-2005) International Symposium.
The Solar-B EUV Imaging Spectrometer: an Overview of EIS J. L. Culhane Mullard Space Science Laboratory University College London.
18-April-2006XRT Team1 Initial Science Observations Solar-B XRT Ed DeLuca for the XRT Team.
TESIS on CORONAS-PHOTON S. V. Kuzin (XRAS) and TESIS Team.
NIRSpec Operations Concept Michael Regan(STScI), Jeff Valenti (STScI) Wolfram Freduling(ECF), Harald Kuntschner(ECF), Robert Fosbury (ECF)
Observations of Moreton waves with Solar-B NARUKAGE Noriyuki Department of Astronomy, Kyoto Univ / Kwasan and Hida Observatories M2 The 4 th Solar-B Science.
Solar-B Mission Status, Operations and Planning Len Culhane – UK EIS Principal Investigator Louise Harra – UK Project Scientist David Williams – UK EIS.
EUV Imaging Spectrometer (EIS): Instrument Checkout, Performance Verification and Initial 90 Day Observing Plan Extended Solar Optical Telescope Meeting.
NoRH Observations of Prominence Eruption Masumi Shimojo Nobeyama Solar Radio Observatory NAOJ/NINS 2004/10/28 Nobeyama Symposium SeiSenRyo.
Joint Planning of SOT/XRT/EIS Observations Outline of 90 Day Initial Observing Plans T. Shimizu, L Culhane.
PACS SVR 22/23 June 2006 Scientific/Performance Requirements1 PACS Science and Performance Requirements A. Poglitsch.
Opportunities for Joint SOT – Ground Based Observations Using NSO/Tucson Facilities J. Harvey, NSO.
Coronal loops: new insights from EIS observations G. Del Zanna 1,2, S. Bradshaw 3, 1 MSSL, University College London, UK 2 DAMTP, University of Cambridge,
Optical characteristics of the EUV spectrometer for the grazing-incidence region L. Poletto, G. Tondello Istituto Nazionale per la Fisica della Materia.
OMI validation workshop - 22 nd June 2006 Louisa. J. Kramer (1), Paul. S. Monks (2), Roland. J. Leigh (1) (1) Earth Observation Science, Space Research.
Flare Prediction and the Background Corona Coronal Diagnostic Spectrometer Wolter-Schwarzschild Type 2 telescope Two separate spectrometers- the Normal.
Model instruments baseline specification and key open issues EUV/FUV High-Throughput Spectroscopic Telescope Toshifumi Shimizu (ISAS/JAXA) SCSDM-4.
020625_ExtReview_Nexus.1 NEXUS / SDO / ILWS SDO Science goals: How does solar variability directly affect life on Earth? SDO areas of interest: –Solar.
XUV monochromatic imaging spectroscopy in the SPIRIT experiment on the CORONAS-F mission I. Diagnostics of solar corona plasma by means of EUV Spectroheliograph.
2005/11/15STEREO/Solar-B Workshop1 Solar-B X-ray Telescope (XRT) R. Kano (NAOJ) and XRT Team XRT.
Flares and Eruptive Events Observed with the XRT on Hinode Kathy Reeves Harvard-Smithsonian Center for Astrophysics.
The X-Ray Telescope aboard Solar-B: An Overview Taro Sakao (ISAS/JAXA) and The XRT Team.
06 Oct 05Space Science & Technology Dept1 Solar Orbiter Consortium Meeting 03 Mar 06 Optical Design Of Solar Orbiter Normal Incidence Spectrometer KF Middleton.
HISAKI mission – ひさき – Chihiro Tao 1,2, Nicolas Andre 1, Hisaki/EXCEED team 1. IRAP, Univ. de Toulouse/UPS-OMP/CNRS 2. now at NICT
XRT SOT Alignment DeLuca With comments from Tarbell & Metcalf 21-Jan-2006.
ISUAL Design Concept S. Mende. SDR 7 Jun NCKU UCB Tohoku ISUAL Design Concept S. Mende Sprite Example Sprite Image obtained by Berkeley/NCKU 1999.
Solar X-ray Imager (SXI) Current and Future Requirements 22 May 2001 Steve Hill Solar Causes and Effects... Operational Requirements Improvements for GOES-R+
Review: Recent Observations on Wave Heating S. Kamio Kwasan and Hida Observatories Kyoto University.
Rev 131 Enceladus’ Plume Solar Occultation LW Esposito and UVIS Team 14 June 2010.
Spectroscopic Observations with SolarB-EIS Helen E. Mason DAMTP, Centre for Mathematical Sciences Giulio Del Zanna, MSSL.
Planning Flare Observations for Hinode/EIS
Studying Transition Region Phenomena with Solar-B/EIS
Slit and Slot Interchange
Presentation transcript:

000509EISPDR_SciInvGIs.1 EIS Performance and Operations Louise Harra Mullard Space Science Laboratory University College London

The 2nd Solar B Science Meeting 4-6 Dec 2000 Extreme-Ultraviolet Imaging Spectrometer (EIS) EIS Records Solar Extreme-Ultraviolet (EUV) Spectra That Contain Information on the Dynamics, Velocity, Temperature, and Density of the Emitting Plasma Spectra Are Obtained With High Spatial Resolution –Spectra at Many Locations Within an Entire Solar Structure Can Be Recorded Spectra Are Obtained With Sufficient Time Resolution to Determine the Dynamics As a Function of Position Within Solar Flare and Active Region Loops Spectra Can Be Accurately Related to the Images Obtained From the Solar-B White Light and X-Ray Telescopes EIS Is the First EUV Solar Spectrometer Capable of Obtaining High Spectral Resolution Data With Both High Spatial and Temporal Resolution

The 2nd Solar B Science Meeting 4-6 Dec 2000 Simplified Schematic of EIS Filter

The 2nd Solar B Science Meeting 4-6 Dec 2000 Perform: EUV Spectroscopy with High Spectral and Spatial Resolution Monochromatic EUV Imaging Imaging and Spectroscopy with High Temporal Resolution Obtain: Imaging and Spectral Measurements from Lines in Transition Region, Coronal and Solar Flare Plasma Accurate Coronal Density Measurements Respond to Highly Dynamic Phenomena Locate and Change the Observing Mode to a Region of Brighter Intensity Observe a Range of Sizes of Solar Phenomena Summary of Science Requirements

The 2nd Solar B Science Meeting 4-6 Dec 2000 Temperature coverage A temperature range of 0.1MK to 20 MK is required (transition region, corona and solar flares). Need observations in the EUV Wavelength bands chosen are A and A. This also includes the density sensitive lines to measure densities between 10 8 cm -3 and cm -3.

The 2nd Solar B Science Meeting 4-6 Dec 2000 Spectral resolution High spectral resolution required - need to determine Doppler vels of ~3 km/s and a line width measurement down to 20 km/s. This is achieved by having a spectral resolution of A and a high throughput (e.g 1000s cts/s in flares, 100s cts/s in active regions).

The 2nd Solar B Science Meeting 4-6 Dec 2000 Time resolution High temporal resolution is required in both imaging and spectroscopy mode - in flares need <1s, and in active regions 10 s. 50 ms exposure time is possible The spacecraft stability is 1.1 in 20 s

The 2nd Solar B Science Meeting 4-6 Dec 2000 Quiet Region Count Rates

The 2nd Solar B Science Meeting 4-6 Dec 2000 Quiet Region Performance

The 2nd Solar B Science Meeting 4-6 Dec 2000 Active Region Count Rates

The 2nd Solar B Science Meeting 4-6 Dec 2000 Active Region Performance

The 2nd Solar B Science Meeting 4-6 Dec 2000 Flare Count Rates

The 2nd Solar B Science Meeting 4-6 Dec 2000 Flare Performance

The 2nd Solar B Science Meeting 4-6 Dec 2000 a) Select a slit or slot as required. Four slit positions are available. 1" for optimum spatial sampling, a 40" slot for monochromatic imaging with no blending of stronger lines, a 2 slit for fastest time cadence, and >100 slit for spectroheliograms. b) Point EIS in the E-W direction with a coarse pointing in the range +/- 15' with an accuracy of +/- 3". The coarse pointing will be used for approximate pointing to targets. c) Fine pointing in the range arc min. d) EIS FOV is 480" x 512" (480" is the fine pointing range - set by optical aberrations, and 512" is the maximum image height on the CCD). e) Stability during an observation of 1" in 10 s (the average exposure time for observation of an active region loop). Spacecraft 3 stability is 0.5 in 2s, 1.1 in 20s and 1.7 in 1 min. f) Determine EIS pointing with a fine pointing accuracy of 0.5". It is required to point EIS with accuracy greater than the spatial resolution of 2. Instrument Design Requirements - Pointing and Field of View

The 2nd Solar B Science Meeting 4-6 Dec 2000 a) Expose and readout the maximum image area of both CCDs (2048 x 512 pixels) This facility is expected to be used for instrument health diagnostic purposes b) Allow any fraction of the CCD slit length to be downloaded in the spatial direction. This is to allow the observation of a smaller FOV c) Allow fractions of the CCD to be downloaded in the spectral direction - spectral windowing d) Minimum of 1 spectral window and a maximum of 25 spectral windows. Instrument Design Requirements - Data Readout Issues

The 2nd Solar B Science Meeting 4-6 Dec 2000 e) Expose and process 1 x 512 arc sec spatial sample (e.g. including readout time, compression) data in < 1s. f) Allow exposure times in the range 100 ms s with an accuracy of 5 %. The ability to make shorter exposures, down to 50 ms with reduced accuracy, is desirable. g) Perform automatic exposure control. h) Perform data compression. The data compression is currently JPEG in the MDP, but the facility to include a different compression scheme e.g. H-compress, in the ICU should remain open. It is required that the compression factor can be varied for different studies Instrument Design Requirements - Data Readout Issues (Cont.)

The 2nd Solar B Science Meeting 4-6 Dec 2000 a) Science operations shall be configured from ground command. b) The onboard software shall be designed to aid code development and to facilitate the uplinking of new software. c) The study sequences shall consist of a number of variables (e.g. exposure time, number of spectral windows, spectral window width, slit/slot size, mirror step). The variables should not be constrained so that for example different width values in the spectral window width can be different for each spectral line. d ) The instrument shall also collect data based on a number of uplinked observing sequences. e) The parameters (e.g. slit size, y size, exposure time) of the observation shall be changeable by command. Instrument Design Requirements - Mode of Observation

The 2nd Solar B Science Meeting 4-6 Dec 2000 a) EIS shall be capable of responding (or not) to the Solar-B XRT Flare Trigger by moving its slit field of view to the flare location and starting a new observation sequence Response shall only be if the flare is within the EIS fine field of view b) EIS shall be capable of generating an internal Solar Event trigger Response should include repositioning the slit field of view and changing the study in progress c) EIS is required to locate regions of interest (e.g. bright points) within a raster or image. It is then necessary to repoint to the ROI and change the study mode (e.g. FOV) Instrument Design Requirements - Event Triggers

The 2nd Solar B Science Meeting 4-6 Dec 2000 Flare

The 2nd Solar B Science Meeting 4-6 Dec 2000 a) EIS shall have the ability to interrupt studies in progress - abort or pause and restart b) EIS shall be capable of monitoring instrument health and entering a safe mode if an anomaly is detected c) The instrument will be designed to respond in an appropriate manner to spacecraft emergencies Instrument Design Requirements - Instrument Health

The 2nd Solar B Science Meeting 4-6 Dec 2000 Operations We plan to observe targets for long periods of time e.g. tracking an active region. We want to maximise the observing time with SOT/XRT. Periodically, we will wish to look at active regions/prominences/plumes at the limb.

The 2nd Solar B Science Meeting 4-6 Dec 2000 Information For producing sample observing studies go to; b\eistudyform.html For information on CCD readout go to; For general EIS information go to; For the science requirements document go to; b\docs\doclist.html For any further information contact