Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology HE-Tree: a framework for detecting changes in clustering.

Slides:



Advertisements
Similar presentations
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Validating Transliteration Hypotheses Using the Web: Web.
Advertisements

Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 On Rival Penalization Controlled Competitive Learning.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Clustering data in an uncertain environment using an artificial.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A novel document similarity measure based on earth mover’s.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Fast exact k nearest neighbors search using an orthogonal search tree Presenter : Chun-Ping Wu Authors.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Unsupervised pattern recognition models for mixed feature-type.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology U*F clustering : a new performant “ clustering-mining ”
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 On-line Learning of Sequence Data Based on Self-Organizing.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Graph self-organizing maps for cyclic and unbounded graphs.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 A Comprehensive Comparison Study of Document Clustering.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology CONTOUR: an efficient algorithm for discovering discriminating.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology On Data Labeling for Clustering Categorical Data Hung-Leng.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Presenter : Chien Shing Chen Author: Wei-Hao.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Topology Preservation in Self-Organizing Feature Maps: Exact.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A self-organizing neural network using ideas from the immune.
Intelligent Database Systems Lab Advisor : Dr. Hsu Graduate : Chien-Ming Hsiao Author : Bing Liu Yiyuan Xia Philp S. Yu 國立雲林科技大學 National Yunlin University.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Determining the best K for clustering transactional datasets – A coverage density-based approach Presenter.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Presenter : Keng-Wei Chang Author: Yehuda.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 New Unsupervised Clustering Algorithm for Large Datasets.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. An IPC-based vector space model for patent retrieval Presenter: Jun-Yi Wu Authors: Yen-Liang Chen, Yu-Ting.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 AC-ViSOM: Hybridising the Modified Adaptive Coordinate.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A Plagiarism Detection Technique for Java Program Using.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A k-mean clustering algorithm for mixed numeric and categorical.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Extensions of vector quantization for incremental clustering.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Graduate : Yu Cheng Chen Author: Manoranjan.
國立雲林科技大學 National Yunlin University of Science and Technology Self-organizing map learning nonlinearly embedded manifoldsmanifolds Author :Timo Simila.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 A Study on Automatic Recognition of Road Signs Presenter.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 2007.SIGIR.8 New Event Detection Based on Indexing-tree.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology SEP/COP: An efficient method to find the best partition.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Utilizing Marginal Net Utility for Recommendation in E-commerce.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Efficient Optimal Linear Boosting of a Pair of Classifiers.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Extensions of vector quantization for incremental clustering.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Graduate : Yu Cheng Chen Author: Chung-hung.
Intelligent Database Systems Lab Advisor : Dr. Hsu Graduate : Chien-Shing Chen Author : Juan D.Velasquez Richard Weber Hiroshi Yasuda 國立雲林科技大學 National.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Fraud detection in online consumer reviews Presenter: Tsai Tzung Ruei Authors: Nan Hu, Ling Liu, Vallabh.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Extreme Visualization: Squeezing a Billion Records into a Million Pixels Presenter : Jiang-Shan Wang.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Rival-Model Penalized Self-Organizing Map Yiu-ming Cheung.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Extending the Growing Hierarchal SOM for Clustering Documents.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Unsupervised word sense disambiguation for Korean through the acyclic weighted digraph using corpus and.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Information Loss of the Mahalanobis Distance in High Dimensions-
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Multiclass boosting with repartitioning Graduate : Chen,
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 An initialization method to simultaneously find initial.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology O( ㏒ 2 M) Self-Organizing Map Algorithm Without Learning.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Enhanced neural gas network for prototype-based clustering.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Region-based image retrieval using integrated color, shape,
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Unsupervised Learning with Mixed Numeric and Nominal Data.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Validity index for clusters of different sizes and densities Presenter: Jun-Yi Wu Authors: Krista Rizman.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 A personal route prediction system base on trajectory.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A new data clustering approach- Generalized cellular automata.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 A hierarchical clustering algorithm for categorical sequence.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Direct mining of discriminative patterns for classifying.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Finding a Team of Experts in Social Networks Theodoros.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Modeling Semantic Similarities in Multiple Maps Presenter.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Towards comprehensive support for organizational mining Presenter : Yu-hui Huang Authors : Minseok Song,
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Graduate : Yu Cheng Chen Author: Wei Xu,
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Providing Justifications in Recommender Systems Presenter.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Predicting corporate bankruptcy using a self-organizing map: An empirical study to improve the forecasting.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology ACM SIGMOD1 Subsequence Matching on Structured Time Series.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Growing Hierarchical Tree SOM: An unsupervised neural.
Intelligent Database Systems Lab Advisor : Dr. Hsu Graduate : Yu Cheng Chen Author : Yongqiang Cao Jianhong Wu 國立雲林科技大學 National Yunlin University of Science.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Dual clustering : integrating data clustering over optimization.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Graduate : Sheng-Hsuan Wang Author : Sanghamitra.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Visualizing social network concepts Presenter : Chun-Ping Wu Authors :Bin Zhu, Stephanie Watts, Hsinchun.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Graduate : Chun Kai Chen Author : Andrew.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Named Entity Disambiguation by Leveraging Wikipedia Semantic Knowledge Presenter : Jiang-Shan Wang Authors.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Adaptive Clustering for Multiple Evolving Streams Graduate.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Enhancing Text Clustering by Leveraging Wikipedia Semantics.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A Nonlinear Mapping for Data Structure Analysis John W.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 A New Cluster Validity Index for Data with Merged Clusters.
Presentation transcript:

Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology HE-Tree: a framework for detecting changes in clustering structure for categorical data streams Keke Chen · Ling Liu VLDB, Vol.18, 2009, pp. 1241–1260 Presenter : Wei-Shen Tai 2010/8/4

N.Y.U.S.T. I. M. Intelligent Database Systems Lab 2 Outline Introduction Entropy-based categorical clustering BKPlot for determining the “Best K” for categorical clustering HE-Tree: capturing cluster entropy of the categorical data stream A monitoring framework based on the HE-Tree Experiments Conclusion Comments

N.Y.U.S.T. I. M. Intelligent Database Systems Lab 3 Motivation Problems of clustering categorical data streams  None addressed the problems of monitoring the change of clustering structure in categorical data streams.  Most methods often assume a fixed number of clusters in the data stream.

N.Y.U.S.T. I. M. Intelligent Database Systems Lab 4 Objective Hierarchical Entropy Tree structure (HE-Tree)  It captures the entropy characteristics of clusters in a data stream, and detects the change of Best K.

N.Y.U.S.T. I. M. Intelligent Database Systems Lab 5 Entropy-based categorical clustering  Classical entropy definition  Optimal partition, Minimizing the weighted entropy of cluster C k  Incremental entropy(IE) After merging two clusters in a partition, the expected entropy should not be reduced.  Minimizing the expected entropy criterion in clustering

N.Y.U.S.T. I. M. Intelligent Database Systems Lab 6 BKPlot for determining the “Best K” for categorical clustering BKPlot method  Determines the candidate best K for static datasets. Investigates the entropy difference between any two optimal neighboring partitions. Second-order difference  ACE (entropy-based agglomerative hierarchical clustering) Generates such high-quality approximate BKPlots.

N.Y.U.S.T. I. M. Intelligent Database Systems Lab 7 ACE IE (incremental entropy)  It is a natural inter-cluster similarity measure, ready for constructing a hierarchical clustering algorithm.  summary table for conveniently counting occurrences of values  M-table for bookkeeping M(Cp, Cq ) of any pair of clusters Cp and Cq.  M-heap for maintaining the minimum M value in each step. EducationWork Elementary schoolEngineering High schoolTeaching university EducationWork

N.Y.U.S.T. I. M. Intelligent Database Systems Lab 8 HE-Tree: capturing cluster entropy of the categorical data stream  Find the most similar sub-tree to sample e  Growing stage If M(e, e i ) = 0 then e is merged to entry e i Else  If leaf-node has empty entry then e is assigned to an empty one  Else spilt leaf-node  Absorbing stage e is merged to entry e i with min M (e, e i )

N.Y.U.S.T. I. M. Intelligent Database Systems Lab 9 A monitoring framework based on the HE-Tree  Time-decaying HE-Tree Let the decaying rate λ, 0 < λ < 1, represent the proportion of the information that is preserved from the last window. (record number, summary table and M-table)  Extended ACE It takes sub-clusters as input and consecutively merges the pair of clusters.

N.Y.U.S.T. I. M. Intelligent Database Systems Lab 10 Experiments - detecting changes

N.Y.U.S.T. I. M. Intelligent Database Systems Lab 11 Effect of the time-decaying HE-Tree

N.Y.U.S.T. I. M. Intelligent Database Systems Lab 12 Conclusion HE-Tree  Detects the change of clustering structure in categorical data streams.  A time-decaying HE-tree makes the framework more sensitive to recently emerging clustering structures.

N.Y.U.S.T. I. M. Intelligent Database Systems Lab 13 Comments Advantage  This proposed scheme provides a solution for detecting changes of categorical data streams.  This entropy-based HE-tree and its decaying ideas can be accepted intuitively. Drawback  Due to summary table cannot handle mixed-type data in the same time, This proposed method only was applied to categorical data streams.  Is the decaying processes still necessary once the fixed-interval window is changed to a moving window? Application  Categorical data stream clustering