Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved. 0-13-140909-3 1 Graphs.

Slides:



Advertisements
Similar presentations
Graphs and Finding your way in the wilderness
Advertisements

Cpt S 223 – Advanced Data Structures Graph Algorithms: Introduction
Graphs and Digraphs Chapter 14.
CS 206 Introduction to Computer Science II 03 / 27 / 2009 Instructor: Michael Eckmann.
Graphs Chapter 12. Chapter Objectives  To become familiar with graph terminology and the different types of graphs  To study a Graph ADT and different.
Introduction This chapter explores graphs and their applications in computer science This chapter explores graphs and their applications in computer science.
© 2006 Pearson Addison-Wesley. All rights reserved14 A-1 Chapter 14 excerpts Graphs (breadth-first-search)
Graphs Graphs are the most general data structures we will study in this course. A graph is a more general version of connected nodes than the tree. Both.
Data Structure and Algorithms (BCS 1223) GRAPH. Introduction of Graph A graph G consists of two things: 1.A set V of elements called nodes(or points or.
 Graph Graph  Types of Graphs Types of Graphs  Data Structures to Store Graphs Data Structures to Store Graphs  Graph Definitions Graph Definitions.
CS 206 Introduction to Computer Science II 11 / 11 / Veterans Day Instructor: Michael Eckmann.
ITEC200 – Week 12 Graphs. 2 Chapter Objectives To become familiar with graph terminology and the different types of graphs To study.
Graph & BFS.
Chapter 9 Graph algorithms. Sample Graph Problems Path problems. Connectedness problems. Spanning tree problems.
Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Graphs.
Graphs CS-240/341. Uses for Graphs computer networks and routing airline flights geographic maps course prerequisite structures tasks for completing a.
B.Ramamurthy1 Graphs Chapter 12 B.Ramamurthy. 2 Introduction A structure that represents connectivity information. A tree is kind of graph. Applications.
Introduction to Graphs
Introduction to Graphs What is a Graph? Some Example applications of Graphs. Graph Terminologies. Representation of Graphs. –Adjacency Matrix. –Adjacency.
Graphs Chapter 12. Chapter 12: Graphs2 Chapter Objectives To become familiar with graph terminology and the different types of graphs To study a Graph.
Spring 2010CS 2251 Graphs Chapter 10. Spring 2010CS 2252 Chapter Objectives To become familiar with graph terminology and the different types of graphs.
CS 206 Introduction to Computer Science II 11 / 03 / 2008 Instructor: Michael Eckmann.
Chapter 9 Graph algorithms Lec 21 Dec 1, Sample Graph Problems Path problems. Connectedness problems. Spanning tree problems.
CS 206 Introduction to Computer Science II 11 / 05 / 2008 Instructor: Michael Eckmann.
CS 206 Introduction to Computer Science II 03 / 25 / 2009 Instructor: Michael Eckmann.
Graphs G = (V,E) V is the vertex set. Vertices are also called nodes and points. E is the edge set. Each edge connects two different vertices. Edges are.
Fall 2007CS 2251 Graphs Chapter 12. Fall 2007CS 2252 Chapter Objectives To become familiar with graph terminology and the different types of graphs To.
Graph Implementations Chapter 29 Copyright ©2012 by Pearson Education, Inc. All rights reserved.
Graph Implementations Chapter 31 Slides by Steve Armstrong LeTourneau University Longview, TX  2007,  Prentice Hall.
Graph. Data Structures Linear data structures: –Array, linked list, stack, queue Non linear data structures: –Tree, binary tree, graph and digraph.
Been-Chian Chien, Wei-Pang Yang, and Wen-Yang Lin 6-1 Chapter 6 Graphs Introduction to Data Structure CHAPTER 6 GRAPHS 6.1 The Graph Abstract Data Type.
1 Graphs Algorithms Sections 9.1, 9.2, and Graphs v1v1 v2v2 v5v5 v7v7 v8v8 v3v3 v6v6 v4v4 A graph G = (V, E) –V: set of vertices (nodes) –E: set.
Chapter 9 – Graphs A graph G=(V,E) – vertices and edges
Computer Science 112 Fundamentals of Programming II Introduction to Graphs.
Graph Dr. Bernard Chen Ph.D. University of Central Arkansas.
Chapter 2 Graph Algorithms.
© 2006 Pearson Addison-Wesley. All rights reserved14 A-1 Chapter 14 Graphs.
GRAPHS CSE, POSTECH. Chapter 16 covers the following topics Graph terminology: vertex, edge, adjacent, incident, degree, cycle, path, connected component,
Searching: Binary Trees and Hash Tables CHAPTER 12 6/4/15 Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education,
Graphs. What is a graph? A data structure that consists of a set of nodes (vertices) and a set of edges that relate the nodes to each other The set of.
 What is a graph? What is a graph?  Directed vs. undirected graphs Directed vs. undirected graphs  Trees vs graphs Trees vs graphs  Terminology: Degree.
Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Graphs.
Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Graphs.
Graphs. Graphs Similar to the graphs you’ve known since the 5 th grade: line graphs, bar graphs, etc., but more general. Those mathematical graphs are.
Graphs A graphs is an abstract representation of a set of objects, called vertices or nodes, where some pairs of the objects are connected by links, called.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver Chapter 13: Graphs Data Abstraction & Problem Solving with C++
1 Directed Graphs Chapter 8. 2 Objectives You will be able to: Say what a directed graph is. Describe two ways to represent a directed graph: Adjacency.
Graphs Chapter 12. Chapter 12: Graphs2 Chapter Objectives To become familiar with graph terminology and the different types of graphs To study a Graph.
Data Structures & Algorithms Graphs Richard Newman based on book by R. Sedgewick and slides by S. Sahni.
Graphs 황승원 Fall 2010 CSE, POSTECH. 2 2 Graphs G = (V,E) V is the vertex set. Vertices are also called nodes and points. E is the edge set. Each edge connects.
GRAPHS. Graph Graph terminology: vertex, edge, adjacent, incident, degree, cycle, path, connected component, spanning tree Types of graphs: undirected,
© 2006 Pearson Addison-Wesley. All rights reserved 14 A-1 Chapter 14 Graphs.
Graphs Basic properties.
Graphs Upon completion you will be able to:
Copyright © Curt Hill Graphs Definitions and Implementations.
Graphs Chapter 28 © 2015 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. Data Structures and Abstractions with Java, 4e Frank Carrano.
Introduction to Graph Theory By: Arun Kumar (Asst. Professor) (Asst. Professor)
Chapter 20: Graphs. Objectives In this chapter, you will: – Learn about graphs – Become familiar with the basic terminology of graph theory – Discover.
Graphs Definition: a graph is an abstract representation of a set of objects where some pairs of the objects are connected by links. The interconnected.
Graphs and Shortest Paths Using ADTs and generic programming.
Lecture #13. Topics 1.The Graph Abstract Data Type. 2.Graph Representations. 3.Elementary Graph Operations.
Lecture 20. Graphs and network models 1. Recap Binary search tree is a special binary tree which is designed to make the search of elements or keys in.
Subject Four Graphs Data Structures. What is a graph? A data structure that consists of a set of nodes (vertices) and a set of edges that relate the nodes.
CMSC 341 Lecture 21 Graphs (Introduction)
Graphs Chapter 11 Objectives Upon completion you will be able to:
Chapter 14 Graphs © 2006 Pearson Addison-Wesley. All rights reserved.
Graphs G = (V, E) V are the vertices; E are the edges.
GRAPHS G=<V,E> Adjacent vertices Undirected graph
Important Problem Types and Fundamental Data Structures
Heaps Chapter 6 Section 6.9.
Presentation transcript:

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Graphs and Digraphs (Part 1) Chapter 16

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Chapter Contents 16.1 Directed Graphs 16.2 Searching and Traversing Digraphs 16.3 Graphs

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Chapter Objectives Introduce directed graphs (digraphs) and look at some of the common implementations of them Study some of the algorithms for searching and traversing digraphs See how searching is basic to traversals and shortest path problems in digraphs Introduce undirected graphs and some of their implementations

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Graphs Similar to a tree –Without a specific ordering Consists of a finite set of elements –Vertices or nodes Together with finite set of directed –Arcs or edges –Connect pairs of vertices

Graphs Undirected –Edges are bidirectional Directed –Edges unidirectional Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved

Graphs Formal definition –A graph G is and ordered triplet (V, E, g) where V – non-empty set of vertices (nodes) E – set of edges g – a function associating with each edge e and unordered pair x – y of vertices, called endpoints Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved

7 Directed Graphs Also known as Digraphs Applications of directed graphs –Analyze electrical circuits –Find shortest routes (Maps) –Develop project schedules

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Directed Graphs Trees are special kinds of directed graphs –One of their nodes (the root) has no incoming arc –Every other node can be reached from the node by a unique path Graphs differ from trees as ADTs –Insertion of a node does not require a link (arc) to other nodes … or may have multiple arcs

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Directed Graphs A directed graph is defined as a collection of data elements: –Called nodes or vertices –And a finite set of direct arcs or edges –The edges connect pairs of nodes Operations include –Constructors –Inserts of nodes, of edges –Deletions of nodes, edges –Search for a value in a node, starting from a given node

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Graph Representation Adjacency matrix representation –for directed graph with vertices numbered 1, 2, … n Defined as n by n matrix named adj The [i,j] entry set to 1 (true) if vertex j is adjacent to vertex i (there is a directed arc from i to j ) 0 (false) otherwise

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Graph Representation rows i columns j Entry [ 1, 5 ] set to true Edge from vertex 1 to vertex 5 Entry [ 1, 5 ] set to true Edge from vertex 1 to vertex 5

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Graph Representation Weighted digraph –There exists a "cost" or "weight" associated with each arc –Then that cost is entered in the adjacency matrix A complete graph –has an edge between each pair of vertices –N nodes will mean N * (N – 1) edges

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Adjacency Matrix Out-degree of i th vertex (node) –Sum of 1's (true's) in row i In-degree of j th vertex (node) –Sum of the 1's (true's) in column j What is the out-degree of node 4? What is the in-degree of node 3?

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Adjacency Matrix Consider the sum of the products of the pairs of elements from row i and column j adj adj 2 Fill in the rest of adj 2 This is the number of paths of length 2 from node 1 to node 3

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Adjacency Matrix Basically we are doing matrix multiplication –What is adj 3 ? The value in each entry would represent –The number of paths of length 3 –From node i to node j Consider the meaning of the generalization of adj n

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Adjacency Matrix Deficiencies in adjacency matrix representation –Data must be stored in separate matrix –When there are few edges the matrix is sparse (wasted space) data =

Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Adjacency-List Representation Solving problem of wasted space –Better to use an array of pointers to linked row- lists This is called an Adjacency-list representation