Chapter 2: Computer-System Structures 2.1 Computer System Operation 2.5 Hardware Protection 2.6 Network Structure.

Slides:



Advertisements
Similar presentations
Computer-System Structures Er.Harsimran Singh
Advertisements

Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 2: Computer-System Structures Computer System Operation I/O Structure Storage.
Chapter 2: Computer-System Structures
1/23/2004CSCI 315 Operating Systems Design1 Computer System Structures Notice: The slides for this lecture have been largely based on those accompanying.
OS2-1 Chapter 2 Computer System Structures. OS2-2 Outlines Computer System Operation I/O Structure Storage Structure Storage Hierarchy Hardware Protection.
1/21/2008CSCI 315 Operating Systems Design1 Operating System Structures Notice: The slides for this lecture have been largely based on those accompanying.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 2: Computer-System Structures Computer System Operation I/O Structure Storage.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 2: Computer-System Structures Computer System Operation I/O Structure Storage.
ICS Principles of Operating Systems
Abhinav Kamra Computer Science, Columbia University 2.1 Operating System Concepts Silberschatz, Galvin and Gagne  2002 Chapter 2: Computer-System Structures.
Computer System Structures memory memory controller disk controller disk controller printer controller printer controller tape-drive controller tape-drive.
Computer-System Structures
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 2: Computer-System Structures 1/31/03 Computer System Operation I/O Structure.
A. Frank - P. Weisberg Operating Systems Functional View of Operating System.
Silberschatz, Galvin and Gagne  Operating System Concepts Bare Machine (early 1950s) Structure  Large machines run from console  Single user.
1/21/2010CSCI 315 Operating Systems Design1 Computer System Structures Notice: The slides for this lecture have been largely based on those accompanying.
Operating system Structure and Operation
Chapter 2: Computer-System Structures
General System Architecture and I/O.  I/O devices and the CPU can execute concurrently.  Each device controller is in charge of a particular device.
Operating System Concepts Ku-Yaw Chang Assistant Professor, Department of Computer Science and Information Engineering Da-Yeh University.
Operating Systems Lecture 3 Computer Systems Review
Chapter 1. Introduction What is an Operating System? Mainframe Systems
2.1 Silberschatz, Galvin and Gagne ©2003 Operating System Concepts with Java Chapter 2: Computer-System Structures Computer System Operation I/O Structure.
CHAPTER 2: COMPUTER-SYSTEM STRUCTURES Computer system operation Computer system operation I/O structure I/O structure Storage structure Storage structure.
Silberschatz, Galvin, and Gagne  Applied Operating System Concepts Module 2: Computer-System Structures Computer System Operation I/O Structure.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 2: Computer-System Structures Computer System Operation I/O Structure Storage.
Chapter 2: Computer-System Structures
Thanks to Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 2 Computer-System Structures n Computer System Operation n I/O Structure.
1 CSE Department MAITSandeep Tayal Computer-System Structures Computer System Operation I/O Structure Storage Structure Storage Hierarchy Hardware Protection.
2: Computer-System Structures
Recall: Three I/O Methods Synchronous: Wait for I/O operation to complete. Asynchronous: Post I/O request and switch to other work. DMA (Direct Memory.
1 Chapter 2: Computer-System Structures  Computer System Operation  I/O Structure  Storage Structure  Storage Hierarchy  Hardware Protection  General.
Chapter 1: Introduction. 1.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 1: Introduction What Operating Systems Do Computer-System.
Chapter 2: Computer-System Structures Computer System Operation I/O Structure Storage Structure Storage Hierarchy Hardware Protection Network Structure.
2.1 Operating System Concepts Chapter 2: Computer-System Structures Computer System Operation Storage Structure Storage Hierarchy Hardware Protection General.
Operating Systems Lecture November 2015© Copyright Virtual University of Pakistan 2 Agenda for Today Review of previous lecture Hardware (I/O, memory,
Operating System Structure A key concept of operating systems is multiprogramming. –Goal of multiprogramming is to efficiently utilize all of the computing.
We will focus on operating system concepts What does it do? How is it implemented? Apply to Windows, Linux, Unix, Solaris, Mac OS X. Will discuss differences.
CE Operating Systems Lecture 2 Low level hardware support for operating systems.
Operating Systems 1 K. Salah Module 1.2: Fundamental Concepts Interrupts System Calls.
1 CS.217 Operating System By Ajarn..Sutapart Sappajak,METC,MSIT Chapter 2 Computer-System Structures Slide 1 Chapter 2 Computer-System Structures.
Silberschatz, Galvin and Gagne  Applied Operating System Concepts Chapter 2: Computer-System Structures Computer System Architecture and Operation.
CE Operating Systems Lecture 2 Low level hardware support for operating systems.
BIT213,CISY Operating Systems 1
1 Lecture 1: Computer System Structures We go over the aspects of computer architecture relevant to OS design  overview  input and output (I/O) organization.
Review of Computer System Organization. Computer Startup For a computer to start running when it is first powered up, it needs to execute an initial program.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 2: Computer-System Structures Computer System Operation I/O Structure Storage.
Chapter 2: Computer-System Structures(Hardware) or Architecture or Organization Computer System Operation I/O Structure Storage Structure Storage Hierarchy.
Chapter 2. Computer-System Structure Device controllers: synchronize and manage access to devices.
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9 th Edit9on Lecture 3 Chapter 1: Introduction Provided & Updated by Sameer Akram.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 2: Computer-System Structures Computer System Operation I/O Structure Storage.
Operating Systems Lecture 2.
Chapter 2: Computer-System Structures(Hardware)
Applied Operating System Concepts
Chapter 2: Computer-System Structures
Chapter 2: Computer-System Structures
Protection of System Resources
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 2: Computer-System Structures Computer System Operation I/O Structure Storage.
Computer-System Architecture
Module 2: Computer-System Structures
Operating Systems Lecture 2.
Architectural Support for OS
Operating Systems Lecture 3.
Module 2: Computer-System Structures
Architectural Support for OS
CS 143A Principles of Operating Systems
Chapter 2: Computer-System Structures
Chapter 2: Computer-System Structures
Module 2: Computer-System Structures
Module 2: Computer-System Structures
Presentation transcript:

Chapter 2: Computer-System Structures 2.1 Computer System Operation 2.5 Hardware Protection 2.6 Network Structure

Computer-System Architecture

Computer-System Operation I/O devices and the CPU can execute concurrently. Each device controller is in charge of a particular device type. Each device controller has a local buffer. CPU moves data from/to main memory to/from local buffers I/O is from the device to local buffer of controller. Device controller informs CPU that it has finished its operation by causing an interrupt.

Common Functions of Interrupts Interrupt transfers control to the interrupt service routine generally, through the interrupt vector, which contains the addresses of all the service routines. Interrupt architecture must save the address of the interrupted instruction. Incoming interrupts are disabled while another interrupt is being processed to prevent a lost interrupt. A trap is a software-generated interrupt caused either by an error or a user request. An operating system is interrupt driven.

Interrupt Handling The operating system preserves the state of the CPU by storing registers and the program counter. Determines which type of interrupt has occurred:  polling  vectored interrupt system Separate segments of code determine what action should be taken for each type of interrupt

Interrupt Time Line For a Single Process Doing Output

Hardware Protection Dual-Mode Operation I/O Protection Memory Protection CPU Protection

Dual-Mode Operation Sharing system resources requires operating system to ensure that an incorrect program cannot cause other programs to execute incorrectly. Provide hardware support to differentiate between at least two modes of operations. 1.User mode – execution done on behalf of a user. 2.Monitor mode (also kernel mode or system mode) – execution done on behalf of operating system.

Dual-Mode Operation (Cont.) Mode bit added to computer hardware to indicate the current mode: monitor (0) or user (1). When an interrupt or fault occurs hardware switches to monitor mode. Privileged instructions can be issued only in monitor mode. monitoruser Interrupt/fault set user mode

I/O Protection All I/O instructions are privileged instructions. Must ensure that a user program could never gain control of the computer in monitor mode (I.e., a user program that, as part of its execution, stores a new address in the interrupt vector).

Use of A System Call to Perform I/O

Memory Protection Must provide memory protection at least for the interrupt vector and the interrupt service routines. In order to have memory protection, add two registers that determine the range of legal addresses a program may access:  Base register – holds the smallest legal physical memory address.  Limit register – contains the size of the range Memory outside the defined range is protected.

Use of A Base and Limit Register

Hardware Address Protection

Hardware Protection When executing in monitor mode, the operating system has unrestricted access to both monitor and user’s memory. The load instructions for the base and limit registers are privileged instructions.

CPU Protection Timer – interrupts computer after specified period to ensure operating system maintains control.  Timer is decremented every clock tick.  When timer reaches the value 0, an interrupt occurs. Timer commonly used to implement time sharing. Time also used to compute the current time. Load-timer is a privileged instruction.

Network Structure Local Area Networks (LAN) Wide Area Networks (WAN)

Local Area Network Structure

Wide Area Network Structure