LPOL-cavity Mechanics Test cavity (pb of the gain)

Slides:



Advertisements
Similar presentations
Optics, Eugene Hecht, Chpt. 8
Advertisements

Green cavity progress Botao Jia May Advisors: Dr. Nanda Sirish, Dr. Wu Ying HAPPEX Collab. Mtg. May 17-18, 2007.
Compton Laser and Systematics for PREx Abdurahim Rakhman Syracuse University PREx Collaboration Meeting, JLab January 30, 2011.
Lecture 21 QCM and Ellipsometry
Polarization of Light Waves
Present status of the laser system for KAGRA Univ. of Tokyo Mio Lab. Photon Science Center SUZUKI, Ken-ichiro.
Trapping Electrons With Light Elijah K. Dunn PHSX 516, Dec. 6, 2011.
Applications of a high finesse Fabry Perot Cavity for the ILC ► Introduction ► Status of the cavity R&D – at ATF – at LAL/Orsay Japanese Labs. : KEK, ATF.
1 Laser Beam Coherence Purpose: To determine the frequency separation between the axial modes of a He-Ne Laser All sources of light, including lasers,
1 Virgo commissioning status M.Barsuglia LAL Orsay.
Wed 15 Jul 2009 ATF2 weekly meeting Oxford MONALISA 1 MONALISA at ATF2 First installation report 15 July 09.
Properties of Multilayer Optics An Investigation of Methods of Polarization Analysis for the ICS Experiment at UCLA 8/4/04 Oliver Williams.
Bunch Length Measurements at the Swiss Light Source (SLS) Linac at the PSI using Electro-Optical Sampling A.Winter, Aachen University and DESY Miniworkshop.
Physics 681: Solar Physics and Instrumentation – Lecture 8 Carsten Denker NJIT Physics Department Center for Solar–Terrestrial Research.
High finesse multi-mirror optical cavities with feedback 1.Fabry-Perot cavity in cw mode: feedback & optical issues 1.Comparison with Sapphire parameters.
Chapter 5 Jones Calculus and Its Application to Birefringent Optical Systems Lecture 1 Wave plates Wave plates (retardation plates) are optical elements.
PQB Photocathode Analyzing Power Study May 19, 2009.
Polarization-preserving of laser beam in Fabry Perot Cavity Accelerator center, IHEP Li Xiaoping.
Installation of a Four-mirror Fabry-Perot cavity at ATF 1.Our setup/goal 2.Why 4 mirrors ? 3.The ATF 4-mirror cavity 4.The optical scheme 5.The laser/cavity.
NA62 Gigatracker Working Group Meeting 2 February 2010 Massimiliano Fiorini CERN.
GWADW, May 2012, Hawaii D. Friedrich ICRR, The University of Tokyo K. Agatsuma, S. Sakata, T. Mori, S. Kawamura QRPN Experiment with Suspended 20mg Mirrors.
1 Fabry-Perot cavity & pulsed laser J. Bonis, V. Brisson, J.N. Cayla, R. Chiche, R. Cizeron, J. Colin, Y. Fedala, G. Guilhem, M. Jacquet-Lemire, D. Jehanno,
Fiber-Optic Accelerometer Using Wavefront-Splitting Interferometry Hsien-Chi Yeh & Shulian Zhang July 14, 2006.
Fabry-Perot cavity for the Compton polarimeter Goal:  5MHz repetition rate & small diameter ≈ 50  m (c.f. P. Schuler’s talks)
The GEO 600 Detector Andreas Freise for the GEO 600 Team Max-Planck-Institute for Gravitational Physics University of Hannover May 20, 2002.
Polarized Source Development Run Results Riad Suleiman Injector Group November 18, 2008.
Hall A Parity Workshop (May 10, 2002), 1 Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy Thomas Jefferson.
LPOL-cavity Introduction Tests at Orsay Optics (laser polarisation) Calorimeter DAQ Mechanics & installation at DESY  Norbert’s talk.
Optomechanical Devices for Improving the Sensitivity of Gravitational Wave Detectors Chunnong Zhao for Australian International Gravitational wave Research.
Silicon chip birefringence
1 Virgo commissioning: Next steps December 12 st 2005 Hannover, ILIAS-GWA WG1 Matteo Barsuglia, LAL/CNRS.
ATF1/2 laser-wires Stewart T. Boogert on behalf of UK Extraction line laserwire collaboration A. Aryshev, G. Blair, S. Boogert, A. Bosco, L. Corner, L.
Montpellier, November 15, 2003 J. Cvach, TileHCAL and APD readout1 TileHCAL- fibre readout by APD APDs and preamplifiers Energy scan with DESY beam –Energy.
Single atom manipulations Benoît Darquié, Silvia Bergamini, Junxiang Zhang, Antoine Browaeys and Philippe Grangier Laboratoire Charles Fabry de l'Institut.
1 The Longitudinal Polarimeter at HERA Electron Polarization at HERA Laser System & Calorimeter Statistical and Systematic Precision Laser Cavity Project.
Frequency Scanned Interferometer Demonstration System Tim Blass, Jason Deibel, Sven Nyberg, Keith Riles, Haijun Yang University of Michigan, Ann Arbor.
LIGO-G0200XX-00-M LIGO Scientific Collaboration1 First Results from the Mesa Beam Profile Cavity Prototype Marco Tarallo 26 July 2005 Caltech – LIGO Laboratory.
CALVA : A test facility for Lock Acquisition F.Cavalier 1 on behalf of CALVA team : M.-A.Bizouard 1, V.Brisson 1, M.Davier 1, P.Hello 1, N.Leroy 1, N.Letendre.
Polarization
LIGO-G09xxxxx-v1 Form F v1 Development of a Low Noise External Cavity Diode Laser in the Littrow Configuration Chloe Ling LIGO SURF 2013 Mentors:
LIGO-G Z The Status of VIRGO E. Tournefier for the Virgo Collaboration GWADW 2004, Aspen From the CITF to VIRGO Commissioning of the Fabry-Perot.
Long Term Stability in CW Cavity Ring-Down Experiments
Non-ideal Cavity Ring-Down Spectroscopy: Linear Birefringence, Linear Polarization Dependent Loss of Supermirrors, and Finite Extinction Ratio of Light.
W. LorenzonEIC, 8 November The Longitudinal Polarimeter at HERA W. Lorenzon (Michigan) Collaboration Polarization at HERA Laser System & Calorimeter.
Paolo La Penna ILIAS N5-WP1 meeting Commissioning Progress Hannover, July 2004 VIRGO commissioning progress report.
Charles University Prague Charles University Prague Institute of Particle and Nuclear Physics Absolute charge measurements using laser setup Pavel Bažant,
ATF2 beam operation status Toshiyuki OKUGI, KEK The 9 th TB&SGC meeting KEK, 3-gokan Seminar Hall 2009/ 12/ 16.
Caltech, February 12th1 Virgo central interferometer: commissioning and engineering runs Matteo Barsuglia Laboratoire de l’Accelerateur Lineaire, Orsay.
Real-time Ellipsometry on Cesium-Telluride Photocathode Formation
The VIRGO detection system
25/05/2007POSIPOL FOUR MIRRORS Fabry Perot resonator at LAL-Orsay Y. Fedala With help of F. Zomer, R.Cizeron.
An H- stripping laser using commercial, diode-pumped Nd:YAG amplifiers Russell Wilcox Laser Stripping Workshop, April 11, 2011.
Laser source for PLC Optical R&D for Laser beam - electron beam Compton scattering Technology 1.Laser Request for PLC 2.Technical solutions  Non linear.
0 Frequency Gain 1/R 1 R 2 R 3 0 Frequency Intensity Longitudinal modes of the cavity c/L G 0 ( ) Case of homogeneous broadening R2R2 R3R3 R1R1 G 0 ( )
Marie Jacquet - POSIPOL 2007 Workshop - LAL 24/05/2007 Precise and fast measurement of the longitudinal polarization at HERA with a Fabry-Pérot cavity.
Optical Cavity construction at LAL  2000 : polarimeter at HERA 2-mirror cavity cw ND:YAG laser, F=30000 (  ~ )  2005 : Ti:sapph pulsed laser.
Design for a New Optical Table of the Shintake Monitor Takashi Yamanaka The University of Tokyo ATF2 weekly meeting 2007/9/26.
Progress of Shintake Monitor (ATF2 IP-BSM) ATF2 weekly meeting 2008/9/3 Takashi Yamanaka The University of Tokyo.
Compton Gamma-ray Generation Experiment by Using an Optical Cavity in ATF POSIPOL 2007 Workshop at LAL Hirotaka Shimizu Hiroshima University.
Chapter 5 Jones Calculus and Its Application to Birefringent Optical Systems Lecture 1 Wave plates Wave plates (retardation plates) are optical elements.
Laser Adaptive Optics for Advanced LIGO
Interference of Light Ø It is generally He-Ne type that generates stable coherent light beam of two frequencies. one polarized vertically and another.
Upgrade activities at Clermont-Ferrand
Introduction Present Status Idea of optimisation Cavity Lpol
Chapter 5 Jones Calculus and Its Application to Birefringent Optical Systems Lecture 1 Wave plates Wave plates (retardation plates) are optical elements.
Chapter 7 Electro-optics
Announcements I should have exams back to you on Fri.
Polarized Source Development Run Results
Feedback Systems Joe Grames Hall A Parity Meeting Jefferson Lab
Kansas Light Source Laser System J. R. Macdonald Laboratory
Presentation transcript:

LPOL-cavity Mechanics Test cavity (pb of the gain) Optics (laser polarisation) Electronics & DAQ  Z. Zhang’s talk

Gain 8000 L  Laser: Nd:YAG (infrared, l =1064 nm) Fabry-Perot cavity: principle e beam L Polar. Circ. Polar. Lin. When nLaser =n0 c/2L  resonance But : Dn/nLaser = 10-11  laser/cavity feedback Done by changing the laser frequency  Laser: Nd:YAG (infrared, l =1064 nm)

Ionic pumps bellow Beam pipe laser amortisseurs inside laser Mirror mount Mirror mount amortisseurs inside laser

Mount for travel Final cavity

Beam pipe Bellow ‘laser axis’

Beam pipe & laser tube inside cavity Holes for vacuum conductivity

Mirror mounts: rotation On the optical table & isolated from cavity & beam pipe rotation cavity mirror bellow Orientations (‘gimbolt’): ‘plan/line/point’ system

Test cavity at orsay Vacuum pump Motorised mirrors Mirror mounts CCD Laser ND:YAG Optcal room Temperature:  0.5o Photodiode  feedback (Saclay)

cavity nlaser zoom Mirror Laser P-diode laser glan Data (oscillo) fit 2Hz & 10V pic-pic Ramp fit V Intensity reflected zoom Intensity transmited Dnlaser=75MHz (nlaser=3.108MHz) t(oscillo)/s t(oscillo)/s 200 ms 100 ms Mirror Laser Under investigation  gain cavity test  2000/8000

Beam intensity after cavity (Gaussian in principle) scan measure) x y

Zoom : Slope not symetric bump

circular polarisation Ellipsometry (`classic’) : Quarter wave plate cavity degree of circular polarisation after cavity   such : (I1-I2)/(I1+I2) = Quart wave plate is the most sensitive element … :- Choice & calibration importants for a per mill precision measurement …

choice f l/4 anti-reflec. coated In principle f 2% f/deg l/4 I1/I0 p-diode: I1 Linear polarised light 50 kHz 12 bits ADC 10 mW YAG Laser Glan Thomson p-diode: I0 <0.25% I1/I0 l/4 anti-reflec. coated f In principle f/deg I1/volts 2% In practice … n2  1.90, d2  50 nm n1  1.36, d1  238 nm Quartz, <n>  1.54, d  150 m

Depends on thickness & optical indices no & ne. Reflection coef. at normal incidence Choice of an uncoated l/4 plate But model required … R/% -20 nm d2 d1 +20 nm Transmitted field Depends on thickness & optical indices no & ne. Quartz = Anisotropic uniaxial medium  4 directions for the field E (2 GO & 2 BACK)

f Polar vertical Calibration of the Quartz plate l/4 p-diode I2 10 mW YAG Laser l/4 Wollaston cube p-diode I2 Glan Thomson Polar elliptic p-diode I0 Polar horizontal Performances Wollaston & Glan Thomson : 10-5 (verified) Measurements of I1/I0 et I2/I0 as function of f for différent incident angles  fit  no, ne & thickness

Photodiode readout Sequence of measurements (ADC 12bits, 50kHz, [-50mV,50mV] range) Laser off (beam shutter) 10k-20k evts/angle Pedestals of the 3 diodes = br0, br1, br2 Laser on : 10k-20k evts/angle Int. for the 3 diodes: I0=Int1-br0, I1=Int1-br1, I2=Int2-br2 I1/I0, I2/I0 recorded evt by evt to compensate for laser variations

70 mV 15 mV 12 mV Fixed angle DT= 0.2o 1.4 mV pedestals 26 h

20 min periode 100% correlated with Temperature Same plots For 2h

m-metric Diode 0 Glan Thomson Wedge plate Diode 1 & 2 Wollaston L/4: 6 screws

Plans We checked that Temp. variations come from pdiode analog electronics Long term variations (24h periode) not understood… Use Temperature stable preamps for photodiodes (now fast preamps of feedback pdiode are used…) Other solution: analog switching  same preamp for the 3 diodes  Precision better than 0.1%

Pate auto-calibration Results (prel.) De/mm c2 Dne Dno < 0.1% < 50 nm/150 mm f f Pate auto-calibration by Interferometry  Laser polar controled at 0.1% level for HERA already no(T) & ne(T) for ND:YAG in handbooks are computed !  mesurement at the per mill level

Conclusions Mechanics: Feedback and cavity gain Laser polarisation cavity arrived beg. july at Orsay August-sept: vacuum tests Optical mounts and cavity mirror mounts Being done in LAL workshop (finished in sept.) Feedback and cavity gain Still low, investigations being done & wait the final system for more more tests (mirror alignment syst. variations) Laser polarisation Per mill level almost reached after 1 year of work… Test of the final setup: start in september

Feedback nL nL+930kHz nL-930kHz YAG laser Glan Cavity nC=nc/(2L) piezo  4MHz/Volt (nL =3.108 MHz) YAG laser Glan Cavity nC=nc/(2L) piezo gene Ramp Reflected signal + sin 930 kHz Photodiode Servo (analog elec) Interference between central & side bandes X Correction signal (closed loop=ramp off) V  nL – nC when nL  nC

Cavité de test au LAL: Schéma optique 4 mirrors Cavité de test au LAL: Schéma optique Signal refléchi feedback lens Pockels cell Glan thomson lens l/2 plate Faraday isolator laser hublot

Implémentation à HERA et `électronique’ Laser et éléments optiques sont près de la cavité s  fini En cours de réalisation