1 INSTITUTE of SOLID STATE PHYSICS Founded 1972 18 Laboratories and Theoretical Department Staff - 180, Scientific staff - 100 In the field of atomic and.

Slides:



Advertisements
Similar presentations
High Resolution Laser Induced Fluorescence Spectroscopic Study of RuF Timothy C. Steimle, Wilton L. Virgo Tongmei Ma The 60 th International Symposium.
Advertisements

64th OSU International Symposium on Molecular Spectroscopy June 22-26, 2009 José Luis Doménech Instituto de Estructura de la Materia 1 MEASUREMENT OF ROTATIONAL.
Lecture 16. LIPS. Introduction a type of atomic emission spectroscopy which uses a highly energetic laser pulse as the excitation source. The laser is.
1 OBSERVATION OF TWO  =0 + EXCITED ELECTRONIC STATES IN JET-COOLED LaH Suresh Yarlagadda Ph.D Student Homi Bhabha National Institute Bhabha Atomic Research.
Positronium Rydberg excitation in AEGIS Physics with many positrons International Fermi School July 2009 – Varenna, Italy The experimental work on.
23 June Performance of a Continuous Supersonic Expansion Discharge Source Evaluated by Laser-Induced Fluorescence Spectroscopy.
EMISSION SPECTROSCOPIC STUDIES OF LASER-INDUCED GRAPHITE PLASMAS László Nemes Research Laboratory for Materials and Environmental Chemistry, Chemical Research.
2 AB AB + + e AB* AB +* + e n h or n 1 h 1 + n 2 h 2 + : -absorption 1h  n h  -ionization Energy.
RADITIVE CONSTANTS OF HgI, HgII and HgIII SPECTRA Kiril Blagoev Institute of Solid State Physics, Sofia, BULGARIA.
Optical Pumping Within a Laser-Induced Plasma to Enhance Trace Element Signal Intensity Anthony Piazza, Russell Putnam, Dylan Malenfant, Steven J. Rehse.
Funded by: DoE. Anh T. Le and Timothy C. Steimle Department of Chemistry and Biochemistry Arizona State University, Tempe,AZ * Varun Gupta, Corey.
4-1 Chap. 7 (Optical Instruments), Chap. 8 (Optical Atomic Spectroscopy) General design of optical instruments Sources of radiation Selection of wavelength.
Cosmic Ray Muon Detection Department of Physics and Space Sciences Florida Institute of Technology Georgia Karagiorgi Julie Slanker Advisor: Dr. M. Hohlmann.
Supersonic Jet Spectroscopy on TiO 2 Millimeter-wave Spectroscopy of Titanium Monoxide and Titanium Dioxide 63 rd International Symposium on Molecular.
Laser Induced breakdown spectroscopy in Water for elemental analysis.
Masters Course: Experimental Techniques Detection of molecular species (with lasers) Techniques Direct absorption techniques Cavity Ring Down Cavity Enhanced.
Heavy Elements Transition Probability Data of Interest in Astrophysics and Divertor Physics Betsy Den Hartog University of Wisconsin - Madison Madison,
Biomedical Applications of Plasma Spectroscopy: A Preliminary Study Dr. Unnikrishnan V. K. Associate Professor Department of Atomic and Molecular Physics.
A new theoretical insight into the spectroscopic properties of polonium and astatine atoms Pascal Quinet Spectroscopie Atomique et Physique des Atomes.
IR/THz Double Resonance Spectroscopy in the Pressure Broadened Regime: A Path Towards Atmospheric Gas Sensing Sree H. Srikantaiah Dane J. Phillips Frank.
Atomic Spectroscopy for Space Applications: Galactic Evolution l M. P. Ruffoni, J. C. Pickering, G. Nave, C. Allende-Prieto.
APOGEE: The Apache Point Observatory Galactic Evolution Experiment l M. P. Ruffoni 1, J. C. Pickering 1, E. Den Hartog 2, G. Nave 3, J. Lawler 2, C. Allende-Prieto.
INTRODUCTION Nucleosynthesis is the method where by nuclides heavier than that of Hydrogen are generated in celestial bodies. Neodymium (Nd) is a Rare-Earth.
Ivan O. Antonov, Michael C. Heaven Emory University, Department of Chemistry 1515 Dickey Drive, Atlanta GA
Evidence of Radiational Transitions in the Triplet Manifold of Large Molecules Haifeng Xu, Philip Johnson Stony Brook University Trevor Sears Brookhaven.
1 Miyasaka Laboratory Yusuke Satoh David W. McCamant et al, Science, 2005, 310, Structural observation of the primary isomerization in vision.
Carbon Nanotube Formation Detection of Ni atom and C 2 Gary DeBoer LeTourneau University Longview, TX NASA Johnson Space Center Thermal Branch Structures.
Photoassociation Spectroscopy of Ultracold Molecules Liantuan XIAO State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser.
Funded by: NSF Timothy C. Steimle, Fang Wang a Arizona State University, USA & Joe Smallman b, Physics Imperial College, London a Currently at JILA THE.
Kinetic Investigation of Collision Induced Excitation Transfer in Kr*(4p 5 5p 1 ) + Kr and Kr*(4p 5 5p 1 ) + He Mixtures Md. Humayun Kabir and Michael.
On the use of LIBS to determine the fractional abundances of carbon ions in the laser plasma plume M. Naiim Habib 1, Y. Marandet 2, L. Mercadier 3, Ph.
Methods: Cavity enhanced absorption methods in the gas phase Luminescence Excitation (organic molecular crystals) Surface Enhanced Raman Spectroscopy (SERS)
Maria Eugenia Sanz, Carlos Cabezas, Santiago Mata, José L. Alonso The Rotational Spectrum of Tryptophan.
Experimental and Theoretical Investigations of HBr+He Rotational Energy Transfer M. H. Kabir, I. O. Antonov, J. M. Merritt, and M. C. Heaven Department.
High-resolution threshold photoionization and photoelectron spectroscopy of propene and 2-butyne Julie M. Michaud, Konstantina Vasilatou and Frédéric Merkt.
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL HYDROSULFIDES: DETECTION OF KSH P. M. SHERIDAN, M. K. L. BINNS, J. P. YOUNG Department of Chemistry.
Fourier-transform coherent anti-Stokes Raman scattering microscopy Jennifer P. Ogilvie et al. Opt. Lett. 31, 480 (2006) Kazuya MORI MIYASAKA Lab.
Electronic Transition of Ruthenium Monoxide Na Wang, Y. W. Ng and A. S.-C. Cheung Department of Chemistry The University of Hong Kong.
Electronic Spectroscopy of Palladium Dimer (Pd 2 ) 68th OSU International Symposium on Molecular Spectroscopy Yue Qian, Y. W. Ng and A. S-C. Cheung Department.
Fang Wang & Timothy C. Steimle Dept. Chem. & BioChem., Arizona State University, Tempe, AZ,USA The 65 th International Symposium on Molecular Spectroscopy,
Application of the inhomogeneous sample model in the piezoelectric spectroscopy of Zn 1-x Be x Te and Cd 1-x Mn x Te mixed crystals. M.Maliński 1) J.Zakrzewski.
Electronic Transitions of Palladium Monoboride and Platinum Monoboride Y.W. Ng, H.F. Pang, Y. S. Wong, Yue Qian, and A. S-C. Cheung Department of Chemistry.
Electronic spectroscopy of CHBr and CDBr Chong Tao, Calvin Mukarakate, Mihaela Deselnicu and Scott A. Reid Department of Chemistry, Marquette University.
Electronic transitions of Yttrium Monoxide Allan S.-C. Cheung, Y. W. Ng, Na Wang and A. Clark Department of Chemistry University of Hong Kong OSU International.
Introduction to Spectroscopy Yongsik Lee.
The states of the C 3 -Ar and C 3 -Kr van der Waals Complexes: Fluorescence Polarization and Saturation Jun-Mei Chao, Kan-Sen Chen, Shin-Shin Cheng, Anthony.
Enhancing the Macroscopic Yield of Narrow-Band High-Order Harmonic Generation by Fano Resonances Muhammed Sayrac Phys-689 Texas A&M University 4/30/2015.
Molecular Triplet States: Excitation, Detection, and Dynamics Wilton L. Virgo Kyle L. Bittinger Robert W. Field Collisional Excitation Transfer in the.
62nd OSU International Symposium on Molecular Spectroscopy TA12 Laser Spectroscopy of Iridium Monoboride Jianjun Ye, H. F. Pang, A. M-Y. Wong, J. W-H.
Molecular Spectroscopy OSU June TRANSIENT ABSORPTION AND TIME-RESOLVED FLUORESCENCE STUDIES OF SOLVATED RUTHENIUM DI-BIPYRIDINE PSEUDO-HALIDE.
Triplet-Singlet Mixing in Si­ 3 : the 1 A A 2 Transition Ruohan Zhang and Timothy C. Steimle International Symposium on Molecular Spectroscopy 68.
Development of a cavity ringdown spectrometer for measuring electronic states of Be clusters JACOB STEWART, MICHAEL SULLIVAN, MICHAEL HEAVEN DEPARTMENT.
California Institute of Technology
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
The optical spectrum of SrOH revisited: Zeeman effect, high- resolution spectroscopy and Franck- Condon factors TRUNG NGUYEN, DAMIAN L KOKKIN, TIMOTHY.
Laser Spectroscopy of the C 1 Σ + – X 1 Σ + Transition of ScI ZHENWU LIAO, MEI YANG, MAN-CHOR CHAN Department of Chemistry, The Chinese University of Hong.
High Resolution Electronic Spectroscopy of 9-Fluorenemethanol (9FM) in the Gas Phase Diane M. Mitchell, James A.J. Fitzpatrick and David W. Pratt Department.
Yu-Shu Lin, Cheng-Chung Chen, and Bor-Chen Chang Department of Chemistry National Central University Chung-Li 32001, Taiwan ~ ~ Electronic Spectroscopy.
Laser activities at University of Pavia in support to SPES project Daniele Scarpa.
Laser spectroscopic study of CaH in the B 2 Σ + and D 2 Σ + state Kyohei Watanabe, Kanako Uchida, Kaori Kobayashi, Fusakazu Matsushima, Yoshiki Moriwaki.
Multi-step and Multi-photon Excitation Studies of Group-IIB Elements
Syedah Sadaf Zehra DCU and UNIPD Supervisors
N2 Vibrational Temperature, Gas Temperature,
Experimental Mapping of the Absolute Value of the Transition Dipole Moment Function μe(R) of the Na2 A1Σu+ - X1Σg+ Transition E. Ahmed1, B. Beser1, P.
Tokyo Univ. Science Mitsunori Araki, Yuki Matsushita, Koichi Tsukiyama
High Resolution Laser Spectroscopy of Iridium Monofluoride
State evolution in cold helium Rydberg gas
Electronic bands of ScC in the region 620 – 720 nm
OBSERVATION OF LEVEL-SPECIFIC PREDISSOCIATION RATES IN S1 ACETYLENE
Presentation transcript:

1 INSTITUTE of SOLID STATE PHYSICS Founded Laboratories and Theoretical Department Staff - 180, Scientific staff In the field of atomic and plasma physics 1.Optics and Spectroscopy 2. Atomic Spectroscopy 3. Metal Vapour Lasers

2 Laboratory Atomic Spectroscopy 1. Employment of HCD for analytical investigations – analyses of layer-by-layer surface of the complex material.- Dr. V. Mihailov 2. Investigation of plasma electron spectroscopy and applications – Dr. P. Pramatarov, Dr. M. Stefanova 3. Atomic constants, atomic spectroscopy and application – Prof. K. Blagoev 4. Quantum optics – Dr. E. Dimova

3 Atomic structure, atomic constants G. Malcheva K. Blagoev

4 Experimental methods for lifetimes and transition probabilities determination Radiative lifetimes - time evolution of the population * Beam foil/laser * time resolved method with: ++ electron excitation ++ laser excitation ( LIF) -width of the excited states + Hanle method Transition probabilities – branching fractions  I = 1/  A ik A ik = (1/  i )(I i /  I j )

5 Radiative lifetimes of excited states - time evolution of the population * Beam foil/laser * time resolved method with: ++ electron excitation ++ laser excitation ( LIF) -width of the excited states + Hanle method

6 Motivation Obtaining new information about atomic structure and radiative properties; New or more precise data for radiative lifetimes and transition probabilities in application for: laser physics, plasma physics and especially for astrophysics Verification of theoretical methods

7 List of the investigated atomic spectra Radiative lifetimes of high lying excited states of NeII,ArII,KrII,XeII – delayed coincidence method with pulsed electron excitation - Radiative lifetimes and transition probabilities of atoms and ions of IIB, IIA group Hg I - LIF and DC methods and HF calculations, Hg II - Delayed coincidence method with electron excitation, Hg III – Delayed coincidence method, Cd I, II - LIF method, HF calculation, branching ratio, Cd III - Delayed coincidence method with electron excitation, Zn I, I – LIF method and HF calculations, AgII, CuII – transition probabilities, branching ratio Radiative lifetimes of some transition elements Zr I, Zr II, III – LIF method and HF calculation Hf I, Hf III – LIF method and HF calculation Nb I LIF, calculations YI, Y III LIF, calculations Tb I, LIF in progress

8

9 VACUUM SYSTEM GAS INLET POWER SUPPLY ELECTRON GUN MONOCHROMATOR PMP GENERATORTIME – AMPLITUDE CONVERTOR AMPLIFIER ADCPC CAMAC AMPLIFIER  t=10 ns

10 Table 2. Radiative Lifetimes of n 3 P states of HgI(ns) ExperimentTheory State[1] DC 2002 [2] Hanle, 1975 [3],  =1/  A ik 1987 [4] 8p 3 P p 3 P p 3 P p 3 P p 3 P p 3 P p 3 P K. Blagoev et al Proc SPIE,v5226, 164(2002), Proc. EGAS34,186(2002) 2.E. Alipieva et al Opt. Sprctr. 43,529(1977); 3. W. J. Alford et al Phys. Rev A36, 641(1987); 4. P. Hafner et al J. Phys. B 11, 2975(1978)

11 ExperimentTheory State[1] LIF [2] e-ph [3]  =1/  Aik [4] BF [5] BF [6] 6p 1 P p 1 P2612 8p 1 P7238 9p 1 P10 10p 1 P K. Blagoev et al proc. SPIE, v. 5256,164(2002); 2. G. C. King et al J. Phys. B B8, 365(1975); 3. W. J. Alford et al Phys. Rev A36, 641(1987); 4. E. H. Pinnington et al Canadian J of Physics, 66, 960(1988); 5. T. Anderson et al JQSRT 13,369(1973); 6. P. Hafner et al J. Phys. B 11, 2975(1978) Table 1. Radiative Lifetimes of np 1 P states of HgI(ns).

12 ExperimentTheory State[1] DC [2] e-ph [3]  =1/  Aik [4] BF [5] BF [6] 6p 1 P p 1 P p 1 P p 1 P d 9 6s 2 6p 1 P p 1 P Table 1a. Radiative Lifetimes of np P states of HgI(ns). K.Blagoev et al Proc. SPIE, v4397, p. 256

13 Delay generator Helmholtz coil Top view Ablation laser Nd:YAG laser (A) Rotating Zr target MCP PMT Monochromator Transient Digitizer Computer Trigger KDP BBO Side view Trigger Nd:YAG laser (B) SBS compressor Dye laser Time Resolved Laser Induced Fluorescence Equipment in Lund Laser Centre

14 H2H2 Raman cell Lens Pelin-Broca prism Generation of necessary frequencies using second, third harmonic and Stokes and anti-Stokes Raman components.

15

16

17 List of the investigated atomic spectra Radiative lifetimes of high lying excited states of NeII,ArII,KrII,XeII – delayed coincidence method with pulsed electron excitation - Radiative lifetimes and transition probabilities of atoms and ions of IIB, IIA group Hg I - LIF and DC methods and HF calculations, Hg II - Delayed coincidence method with electron excitation, Hg III – Delayed coincidence method, Cd I, II - LIF method, HF calculation, branching ratio, Cd III - Delayed coincidence method with electron excitation, Zn I, I – LIF method and HF calculations, AgII, CuII – transition probabilities, branching ratio Radiative lifetimes of some transition elements Zr I, Zr II, III – LIF method and HF calculation Hf I, Hf III – LIF method and HF calculation Nb I - LIF, calculations YI, Y III - LIF, calculations Tb I - LIF in progress

18 Table2. Excitation schemes LevelE, cm -1 Starting level Starting level, cm -1 exc (nm) air obs (nm) air 4d5p z 1 D 2 o d 2 1 D 3 4d5p z 3 D 1 o d 2 3 P 3 4d5p z 3 D 2 o d 2 3 P 3 4d5p z 3 D 3 o d 2 3 P 3 4d5p z3F 2 o d 2 3 P 3 Table 1. Radiative Lifetimes of Zr III excited levels (data in ns). Level Energy,ExperimentTheory. cm-1This work [7][3] 4d5p z 1 D 2 o (20) d5p z 3 D 1 o (15) d5p z 3 D 2 o (10) d5p z 3 D 3 o (15) d5p z3F 2 o (20) R. Mayo, J. Campos, M. Ortiz, H. Xu, S. Svanberg, G. Malcheva and K. Blagoev Eur. Phys. J: D40,169,2006.

19 A typical experimental time-resolved signal from the cm−1 level in Zr III.

20

21

22 Experimental methods for lifetimes and transition probabilities determination Radiative lifetimes - time evolution of the population * Beam foil/laser * time resolved method with: ++ electron excitation ++ laser excitation ( LIF) -width of the excited states + Hanle method Transition probabilities – branching fractions  I = 1/  A ik, A ik = (1/  i )(I i /  I j )

23 Принцип на действие на лазерно-индуцираната спектроскопия (LIBS)

24 Nd-YAG Laser Monochromator Photodetector AmplifierDelay Oscilloscope OMA III Computer Laser parameters: 1064 nm, 20 Hz, t = 7 ns, E = 240 mJ. Transition probabilities - LIBS

25 Time dependence of Au I and Au II spectra

26 LIBS in archaeology

27 Nd:YAG laser (Quanta Ray GC3),λ = 1064 nm E = mJ T≈ 10 ns; 10 Hz Eschelle spectrometer (Mechelle 5000) Sample

28

29

30 Spectrum from silver sample obtained by Meshele 5000

31 LIBS in Art

32 LIBS

33 J. Campos, M. Ortiz,R. Mayo - Universidad Complutense de Madrid, Spain; -H. L. Xu, S. Svanberg, L. Engstr¨om, H. Lundberg - Lund Institute of Technology, Lund, Sweden - H. Nilsson - Lund Observatory, Lund, Sweden -E. Biémont, P. Quinet, V. Fivet - Université de Liège, Liège 1, Belgium -P. Palmeri - Astrophysique et Spectroscopie, - Universit´e de Mons– UMONS, Mons, Belgium -Acknowledgements -Laser lab in Europe -Bulgarian National Science Foundation

34 Thank you