Modelling complexity in the upper atmosphere using GPS data Chris Budd, Cathryn Mitchell, Paul Spencer Bath Institute for Complex Systems, University of.

Slides:



Advertisements
Similar presentations
University of Bath 4D ionisation dynamics during storms of the recent solar maximum Cathryn Mitchell, Ping Yin, Paul Spencer and Dmitriy Pokhotelov, University.
Advertisements

Manifestation of strong geomagnetic storms in the ionosphere above Europe D. Buresova(1), J. Lastovicka(1), and G. DeFranceschi(2) (1)Institute of Atmospheric.
G P S G P S T E C E. Yizengaw, P.L. Dyson & E. A. Essex
HF management communication system and link optimization Bruno Zolesi. Istituto Nazionale di Geofisica e Vulcanologia.
Introduction to the Ionosphere
URSIGA, New Delhi, Oct 2005 Coordinated Observations of Ionospheric Scintillations, Density Profiles and Total Electron Content on a Common Magnetic.
The day-to-day longitudinal variability of the global ionospheric density distribution: Preliminary results E.E. Pacheco and E. Yizengaw Institute for.
Ionosphere Climate Studied by F3 / COSMIC Constellation C. H. Liu Academia Sinica In Collaboration with Tulasi Ram, C.H. Lin and S.Y. Su.
TRMM Tropical Rainfall Measurement (Mission). Why TRMM? n Tropical Rainfall Measuring Mission (TRMM) is a joint US-Japan study initiated in 1997 to study.
Modelling the Thermosphere-Ionosphere Response to Space Weather Effects: the Problem with the Inputs Alan Aylward, George Millward, Alex Lotinga Atmospheric.
Auroral dynamics EISCAT Svalbard Radar: field-aligned beam  complicated spatial structure (
Abstract Since the ionosphere is the interface between the Earth and space environments and impacts radio, television and satellite communication, it is.
Inversion imaging of the Sun-Earth System Damien Allain, Cathryn Mitchell, Dimitriy Pokhotelov, Manuchehr Soleimani, Paul Spencer, Jenna Tong, Ping Yin,
Anomalous Ionospheric Profiles Association of Anomalous Profiles and Magnetic Fields The Effects of Solar Flares on Earth and Mars.
Mesoscale ionospheric tomography over Finland Juha-Pekka Luntama Finnish Meteorological Institute Cathryn Mitchell, Paul Spencer University of Bath 4th.
TEC and its Uncertainty Ludger Scherliess Center for Atmospheric and Space Sciences Utah State University GEM Mini-Workshop San Francisco December 2014.
Principles of the Global Positioning System Lecture 11 Prof. Thomas Herring Room A;
COSMIC / FormoSat 3 Overview, Status, First results, Data distribution.
GPS Occultation Studies of the Lower Ionosphere: Current Investigations and Future Roles for C/NOFS & COSMIC Sensors R. Bishop.
EISCAT Radar Summer School 15th-26th August 2005 Kiruna
Sandro M. Radicella Head, Aeronomy and radiopropagation Laboratory Ionospheric Research at the Abdus Salam ICTP Aeronomy and Radiopropagation Laboratory.
GPS derived TEC Measurements for Plasmaspheric Studies: A Tutorial and Recent Results Mark Moldwin LD Zhang, G. Hajj, I. Harris, T. Mannucci, X. PI.
EGU General Assembly 2013, 7 – 12 April 2013, Vienna, Austria This study: is pioneer in modeling the upper atmosphere, using space geodetic techniques,
UTSA Estimating Model Parameters from Ionospheric Reverse Engineering (EMPIRE) G. S. Bust and G. Crowley UTSA S. Datta-Barua ASTRA.
ARL Applied Research Laboratories The University of Texas at Austin LWA Ionospherically Related Work at ARL:UT Dr. Gary S. Bust.
ARL Applied Research Laboratories The University of Texas at Austin ARL Applied Research Laboratories The University of Texas at Austin Ionospheric Tomography.
Sub-ionospheric Point hmhm Ionosphere Earth Surface Ionospheric Piercing Point High Resolution GPS-TEC Gradients in the Northern Hemisphere Ionospheric.
Ground-based ionospheric networks in Europe Ljiljana R. Cander.
Claudinei Rodrigues de Aguiar Federal University of Technology - Parana Paulo de Oliveira Camargo São Paulo State University.
Joint International GRACE Science Team Meeting and DFG SPP 1257 Symposium, Oct. 2007, GFZ Potsdam Folie 1 Retrieval of electron density profiles.
ROSA – ROSSA Validation results R. Notarpietro, G. Perona, M. Cucca
Distributed Radar Networks Ray Greenwald JHU/APL.
Effects of the Magnetosphere and Lower Atmosphere on the Ionosphere-Thermosphere System R.W. Schunk, L. Gardner, L. Scherliess, D.C. Thompson, J.J. Sojka.
VARIABILITY OF TOTAL ELECTRON CONTENT AT EUROPEAN LATITUDES A. Krankowski(1), L. W. Baran(1), W. Kosek (2), I. I. Shagimuratov(3), M. Kalarus (2) (1) Institute.
The Mesoscale Ionospheric Simulation Testbed (MIST) Regional Data Assimilation Model Joseph Comberiate Michael Kelly Ethan Miller June 24, 2013.
Global E-region Densities Derived from Radio Occultation Measurements M. J. Nicolls 1, F. S Rodrigues 2, and G. S. Bust 2 1. SRI International, Menlo Park,
Comparison of the electron density profiles measured with the Incoherent Scatter Radar, Digisonde DPS-4 and Chirp-Ionosonde Ratovsky K.G., Shpynev* B.G.,
Ionospheric irregularities observed with a GPS network in Japan TOHRU ARAMAKI[1],Yuichi Otsuka[1],Tadahiko Ogawa[1],Akinori Saito[2] and Takuya Tsugawa[2]
Ionospheric Assimilation Model for Space Weather Monitoring and Forecasting I. T. Lee 1 W. H. Chen 2, T. Matsuo 3,4, C. H. Chang 2,
Study on the Impact of Combined Magnetic and Electric Field Analysis and of Ocean Circulation Effects on Swarm Mission Performance by S. Vennerstrom, E.
Electron density profile retrieval from RO data Xin’an Yue, Bill Schreiner  Abel inversion error of Ne  Data Assimilation test.
Data Assimilation Retrieval of Electron Density Profiles from Radio Occultation Measurements Xin’an Yue, W. S. Schreiner, Jason Lin, C. Rocken, Y-H. Kuo.
0 7th ESWW, Bruges, Ionospheric Scintillations Propagation Model Y. Béniguel, J-P Adam IEEA, Courbevoie, France.
What is a geomagnetic storm? A very efficient exchange of energy from the solar wind into the space environment surrounding Earth; These storms result.
COSMIC Ionospheric measurements Jiuhou Lei NCAR ASP/HAO Research review, Boulder, March 8, 2007.
© Copyright QinetiQ limited 2006 On the application of meteorological data assimilation techniques to radio occultation measurements of.
Ionospheric characteristics above martian crustal magnetic anomalies Paul Withers, M Mendillo, H Rishbeth, D Hinson, and J Arkani-Hamed Abstract #33.02.
Real time reconstruction of 3-D electron density distribution over Europe with TaD profiler Ivan Kutiev 1,2, Pencho Marinov 1, Anna Belehaki 2 1 Bulgarian.
URSI XXVI General Assembly, Toronto, Canada, August 1999 Improved Method for Measuring the Satellite-to-Satellite TEC in the Ionosphere by S. Syndergaard.
Thermospheric density variations due to space weather Tiera Laitinen, Juho Iipponen, Ilja Honkonen, Max van de Kamp, Ari Viljanen, Pekka Janhunen Finnish.
Effects of January 2010 stratospheric sudden warming in the low-latitude ionosphere L. Goncharenko, A. Coster, W. Rideout, MIT Haystack Observatory, USA.
Interminimum Changes in Global Total Electron Content and Neutral Mass Density John Emmert, Sarah McDonald Space Science Division, Naval Research Lab Anthony.
Observations of Specific Differential Phase, KDP Chris Collier Acknowledgements: Lindsay Bennett, Alan Blyth and David Dufton.
Global and Regional Total Electron Content Anthony Mannucci, Xing Meng, Panagiotis Vergados, Attila Komjathy JPL/Caltech Collaborators: Sarah E. McDonald,
S. Datta-Barua, Illinois Institute of Technology G. S. Bust, JHUAPL
Status of GNSS ionospheric Study in Korea
Static Stability in the Global UTLS Observations of Long-term Mean Structure and Variability using GPS Radio Occultation Data Kevin M. Grise David W.
Ionospheric Models Levan Lomidze Center for Atmospheric and Space Sciences Utah State University CEDAR-GEM Student Workshop, June.
Center for Atmospheric & Space Sciences
Ionosphere, Magnetosphere and Thermosphere Anthea Coster
CEDAR 2013 Workshop International space weather and climate observations along the 120E/60W meridional circle and its surrounding areas Space weather observations.
Astrid Maute, Art Richmond, Ben Foster
Penetration Jet DMSP F April MLT
Ionospheric impacts on LoFAR
Principles of the Global Positioning System Lecture 11
SSAEM Sensors Paul R Straus October 14, 2011.
GPS Ionospheric Mapping at Natural Resources Canada
Evaluation of IRI-2012 by comparison with JASON-1 TEC and incoherent scatter radar observations during the solar minimum period Eun-Young Ji,
by using EISCAT/ESR Radars Enhanced TEC fluctuations
HG contribution to the GRC and more
Presentation transcript:

Modelling complexity in the upper atmosphere using GPS data Chris Budd, Cathryn Mitchell, Paul Spencer Bath Institute for Complex Systems, University of Bath

Ground-receiver tomography Instrumentation Have. Networks of GPS receivers at mid-latitudes over continental regions of the Northern Hemisphere Problem: Atmosphere is a highly complex and multi- scale, time-evolving system. It is vital to know the state of all levels for meteorology and navigation

LATITUDE Ionospheric Imaging Measured – relative values of total electron content TEC Find – 3D time-evolving electron density Ne ALTITUDE Multi-Instrument Data AnalysiS

Acknowledgements: IGS network MIDAS – Northern Hemisphere GPS receivers

6 moving satellites S 100 receivers R Measure the differential phase change between dual frequency radio signals from S to R at 2 minute intervals over one hour is directly proportional to the total electron content (TEC) of the ionosphere over the path s Ionosphere 1000km s Time varying Electron density Ne

Ne : electron concentration along the I = 6*100 paths s at the initial time (order 100 G electrons/metre cubed) Set up 3D grid of J = 20 [height] *360*360 [angle] voxels, x electron density in each voxel, matrix A of path lengths in each voxel Ill-conditioned.. Use a-priori information to solve

[electron density] = [model electron density] [coefficients] MIDAS algorithm The electron density ( x ) distribution is formed from the weighted ( W ) sum of orthonormal basis functions, X : 4*50 Spherical Harmonics in latitude and longitude and 3 empirical functions Chapman Profiles in height z

Chapman functions z

Obtain least squares best fit for W using the regularised SVD to calculate the generalised inverse Initial estimate of the electron density

Update this estimate every 2 minutes by assuming small change y in x, c in the measured TEC b and D in the ray path matrix A. To leading order have Mapping matrix, X, transforms the problem to one for which the unknowns are the linear changes in coefficients G (y = XG) of the orthonormal basis functions MIDAS – time-dependent inversion Improve with a Kalman filter

Horizontal Variation Spherical Harmonics Model (eg IRI) Height profile (to create EOFS) Thin Shell (variable height) Chapman profiles Epstein profiles Models (eg IRI) TIME: None Zonal/Meridional Zonal/Meridional & Radial Co-ordinate frame Geographic Geomagnetic Inversion type 2-D (latitude-height or thin shell) 3-D (2-D with time evolution or latitude- longitude-altitude) 4-D (latitude-longitude- altitude-time) Graphics options Vertical profiles of Ne Horizontal profiles of Ne TEC maps Electron concentration images (latitude vs height) at one longitude. Electron concentration images (longitude vs height) at one latitude. TEC movies Electron concentration movies MIDAS algorithm

Electron density North America Longitude 70 W Vertical TEC b Electron density Ne

Vertical TEC b

Observations of mid-latitude ionospheric storms Near global view of TEC distributions Observations of storm enhanced density Uplifts in layer height over Europe and North America Poleward movement of the anomaly

Imaging Issues What is the spatial resolution? What is the temporal resolution? What is the accuracy of the imaged electron density? What scientific information can we derive directly from the images?

Radar backscatter Verification of the peak height uplift over the USA MIDAS

Combining imaging with first-principle modeling How can we relate the images the underlying physics? Imaging alone cannot get at the underlying physics Simply reproducing localized image features with modeling does not uniquely determine the physical drivers Future aim – develop methods that constrain the physical models with full 4D imaging

Acknowledgements to: GPS RINEX data from SOPAC, IDA3D images from ARLUT, EISCAT Collaboration with Cornell University Support from BAE SYSTEMS, the UK EPSRC, BICS and PPARC

MIDAS – Northern Hemisphere

Coverage of Input Data ionosonde Polar NIMS GPS

Is the TEC movie showing convection? If so, the plasma over Europe originates from the USA TEC over the Northern Hemisphere

F2 layer uplifts move horizontally westwards, that is, firstly, in the European sector, then the east coast of the USA, and around an hour later, occurring in the west coast of the USA East-west progression of layer height uplift

Equatorial imaging (with Cornell University)

Polar imaging Observations of patches over ESR IDA3D imaging appears to show patches convecting from Sondestrom to ESR Imaging alone cannot show the convection Combine AMIE convection patterns with trajectory analysis into IDA3D Provides strong evidence of plasma transport from Sondestrom to ESR

IDA3D Ne at 400 km 2005 UT Patch

Results from Europe

Ionospheric Measurements

Observations over ESR Patch at 20 UT