10.6: Volumes of Pyramids and Cones Objective: To find the volume of pyramids and cones.

Slides:



Advertisements
Similar presentations
Volume of Cones and Pyramids
Advertisements

 A cylinder has two identical flat ends that are circular and one curved side.  Volume is the amount of space inside a shape, measured in cubic units.
MFM1P Minds On Determine the volume of: a) This square based pyramid b) This triangular based pyramid.
Volumes of Pyramids & Cones Objectives: 1) Find the volume of a right Pyramid. 2) Find the volume of right Cone.
11 – 5 Volumes of Pyramids & Cones
11.5 Volume of Pyramids and Cones. Finding Volumes of Pyramids and Cones In 11.4, you learned that the volume of a prism is equal to Bh, where B is the.
10-4 Surface Areas of Pyramids
11-5 Volumes of Pyramids and Cones. Volume of a Pyramid The volume of a pyramid is one third the product of the area of the base and the height of the.
Lesson 12-5, 6, 13-2 Cones & Pyramids. Objectives Find lateral areas of regular pyramids Find surface areas of regular pyramids Find the volume of pyramids.
Surface Area and Volume of Cones
Volume of Pyramids and Cones
Find the surface area of each. S = (Pℓ)/2 + B = (20×3)(15)/2 + 20√( )/2 = in 2 S = (Pℓ)/2 + B = (10×6)(14)/2 + (8.7)(10×6)/2 = ft.
10-4 Surface Areas of Pyramids and Cones
Volume: Pyramids, Cones and Spheres Volume of a Pyramid or Cone = Volume of a Pyramid Volume of a Cone r.
12-5 Volumes of Pyramids and Cones. Volume of a Pyramid The volume of a pyramid is one third the product of the area of the base and the height of the.
EOC Practice 1. Describe the cross section. a. Cube b. trapezoid
MFM1P Minds On Determine the volume of the following shapes:
GEOMETRY HELP Find the volume of a square pyramid with base edges 15 cm and height 22 cm. Because the base is a square, B = = 225. V = BhUse the.
Volume of Pyramids & Cones
PRE-ALGEBRA. Surface Area: Pyramids, Cones, and Spheres (10-6) How can you find the surface area of a pyramid using a formula? Surface Area (S.A.) of.
12-5 and 12-6 Volumes of Prisms, Cylinders, Pyramids, and Cones Objective – Find the volumes of prisms, cylinders, pyramids, and cones.
1 Cylinders and Cones. 2 Surface Area (SA) = ph + 2B = 2πrh + 2πr 2 Cylinders are right prisms with circular bases. Therefore, the formulas for prisms.
Skills Check Skills Check Volume of Prisms & Pyramids.
Notes Over Surface Area l b.
Warm Up Find the missing side length of each right triangle with legs a and b and hypotenuse c. 1. a = 7, b = c = 15, a = 9 3. b = 40, c = 41 4.
Chapter 10: Surface Area and Volume Objectives: Students will be able to find the surface area and volume of three dimensional figures.
Surface Area of Pyramids and Cones
Chapter 12 Volume. Volume Number of cubic units contained in a 3-D figure –Answer must be in cubic units ex. in 3.
Chapter 10 Lesson 6 Objective: To find the volume of a pyramid and a cone.
How to find the volume of a prism, cylinder, pyramid, cone, and sphere. Chapter (Volume)GeometryStandard/Goal 2.2.
LESSON If the height of a regular square prism is 29 thumbs and the base edges are 40 thumbs, find the surface area and the volume. 7,840 thumbs 2 46,400.
13.2 Volume of Pyramids and Cones Vinh Lam and Zach Mann.
Volume of Pyramids and Cones Section 9.5. Objectives: Find the volumes of pyramids and cones.
Chapter Volume of Pyramids and Cones Find the area of the base of the regular pyramid 1.Base is a regular hexagon Area of hexagon 2.
12.3 Surface Area of Pyramids and Cones
10-4 Surface Areas of Pyramids and Cones
Surface Area of Pyramids and Cones
Volume of Pyramids and Cones
11 – 5 Volumes of Pyramids & Cones
10-6 Volumes of Pyramids and Cones
Objectives Learn and apply the formula for the volume of a pyramid.
Objective: To find the volume of a pyramid and a cone.
10-4 Surface Areas of Pyramids
10-7 Volume of Pyramids and Cones
Lesson 9-3 Cylinders and Cones.
10 – 5 Volumes of Pyramids & Cones
Lesson 6-3 Volume of Pyramids and Cones
Lesson 6-3 Volume of Pyramids and Cones
Volume of Prisms and Pyramids
Objectives Learn and apply the formula for the surface area of a pyramid. Learn and apply the formula for the surface area of a cone.
10-4 Surface Areas of Pyramids
Lateral Area & Surface Area Of Pyramids & Cones
11.3 and 11.5: Pyramids and Cones
Lesson 6-3 Volume of Pyramids and Cones
Volume Pyramids.
10-4 Surface Areas of Pyramids
Volume of Prisms and Pyramids
Chapter 10 Extension Objective: To find missing dimensions
12.5: Volumes of Pyramids and Cones
11.3 Pyramids and Cones.
11.7 Volume of Pyramids and Cones
Volume of Prisms and Pyramids
Objective: To find…. Find volumes of prisms and cylinders.
Skills Check Formulas.
Volume of Prisms. Volume of Prisms V = Bh B = area of BASE h = HEIGHT of the solid (use different formulas according to the shape of the base) h =
11.3 Pyramids and Cones.
Volume of Pyramids and Cones
Surface Areas of Pyramids and Cones
Volume of Prisms and Pyramids
Lesson 9-3: Cylinders and Cones
Presentation transcript:

10.6: Volumes of Pyramids and Cones Objective: To find the volume of pyramids and cones.

Volume: The space that a figure occupies. Volume of a Pyramid: FORMULA: H V = 1/3 BH

Volume of a Cone: FORMULA: V = 1/3 BH or V = 1/3  r²H H

Example 1: Find the volume of a square pyramid with base edges 15 cm & height 22cm. V = 1/3 BH = 1/3s 2 H = 1/3 (15) 2 (22) = 1650 cm³

Example 2: Find volume of a square pyramid with base edges 16 m and a slant height 17 m: What is missing? How do we find it? H Pythagorean Theorem

Now, find volume V = 1/3 BH = 1/3bhH = 1/3(16)(16)(15) = 1/3(16)(16)(15) = 1280 m³ = 1280 m³ Find H Find H 17² = 8² + H² 289 = 64 + H² 225 = H² 15 = H 15 = H H

Ex. #3 You try: Find the volume of a square pyramid with base edges 24 m and slant height 13 m: V = 1/3 BH = 1/3s 2 H = 1/3(24) 2 (5) = 1/3(24) 2 (5) = 960 m³ = 960 m³ Find H ( ) 5 = H 5 = H

Example 4: Find the volume of the oblique cone: V = 1/3  r²H = 1/3  (3²)(11) = 1/3  (3²)(11) = 33  in³ = 33  in³

Ex. 5 You try: Find the volume of each cone in terms of  and also rounded as indicated: a. To the nearest m 3 V = 1/3  r²H = 1/3  (6²)(12) = 144  m³ = 144  m³ ≈ 452 m³ ≈ 452 m³

b. To the nearest mm 3. V = 1/3  r²H = 1/3  (21²)(42) = 6174  mm³ = 6174  mm³ ≈ mm³ ≈ mm³

Assignment: Pg 554 #2-14 even, 15-18, 22-23, 28