BAI CM20144 Applications I: Mathematics for Applications Mark Wood

Slides:



Advertisements
Similar presentations
4.4.1 Generalised Row Echelon Form
Advertisements

BAI CM20144 Applications I: Mathematics for Applications Mark Wood
BAI CM20144 Applications I: Mathematics for Applications Mark Wood
BAI CM20144 Applications I: Mathematics for Applications Mark Wood
Copyright © Cengage Learning. All rights reserved.
Chapter 4 Systems of Linear Equations; Matrices
Chapter 1: Linear Equations
Gauss Elimination.
Gauss – Jordan Elimination Method: Example 2 Solve the following system of linear equations using the Gauss - Jordan elimination method Slide 1.
Matrices. Special Matrices Matrix Addition and Subtraction Example.
Chapter 1 Systems of Linear Equations
10.1 Gaussian Elimination Method
Gauss-Jordan Matrix Elimination Brought to you by Tutorial Services – The Math Center.
Section 8.1 – Systems of Linear Equations
Solving System of Linear Equations. 1. Diagonal Form of a System of Equations 2. Elementary Row Operations 3. Elementary Row Operation 1 4. Elementary.
Elementary Linear Algebra Howard Anton Copyright © 2010 by John Wiley & Sons, Inc. All rights reserved. Chapter 1.
Introduction Information in science, business, and mathematics is often organized into rows and columns to form rectangular arrays called “matrices” (plural.
Systems of linear equations. Simple system Solution.
Linear Algebra – Linear Equations
Multivariate Linear Systems and Row Operations.
SYSTEMS OF LINEAR EQUATIONS
Elementary Linear Algebra Howard Anton Copyright © 2010 by John Wiley & Sons, Inc. All rights reserved. Chapter 1.
Matrices King Saud University. If m and n are positive integers, then an m  n matrix is a rectangular array in which each entry a ij of the matrix is.
AN INTRODUCTION TO ELEMENTARY ROW OPERATIONS Tools to Solve Matrices.
Copyright © 2011 Pearson, Inc. 7.3 Multivariate Linear Systems and Row Operations.
Slide Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.
Section 1.1 Introduction to Systems of Linear Equations.
Sec 3.1 Introduction to Linear System Sec 3.2 Matrices and Gaussian Elemination The graph is a line in xy-plane The graph is a line in xyz-plane.
Matrix Algebra. Quick Review Quick Review Solutions.
1.1.2 INTRODUCTION TO SYSTEMS OF LINEAR EQUATIONS Chapter 1: Systems of Linear Equations and Matrices SWBAT: Redefine algebraic operations as Elementary.
Three variables Systems of Equations and Inequalities.
How To Find The Reduced Row Echelon Form. Reduced Row Echelon Form A matrix is said to be in reduced row echelon form provided it satisfies the following.
Guass-jordan Reduction :
Sec 3.2 Matrices and Gaussian Elemination Coefficient Matrix 3 x 3 Coefficient Matrix 3 x 3 Augmented Coefficient Matrix 3 x 4 Augmented Coefficient Matrix.
Using Matrices A matrix is a rectangular array that can help us to streamline the solving of a system of equations The order of this matrix is 2 × 3 If.
10.4 Matrix Algebra 1.Matrix Notation 2.Sum/Difference of 2 matrices 3.Scalar multiple 4.Product of 2 matrices 5.Identity Matrix 6.Inverse of a matrix.
Matrices and Systems of Equations
Matrices and Systems of Linear Equations
How To Find The Reduced Row Echelon Form. Reduced Row Echelon Form A matrix is said to be in reduced row echelon form provided it satisfies the following.
Sullivan Algebra and Trigonometry: Section 12.3 Objectives of this Section Write the Augmented Matrix of a System of Linear Equations Write the System.
Linear Equation System Pertemuan 4 Matakuliah: S0262-Analisis Numerik Tahun: 2010.
Chapter 1 Linear Algebra S 2 Systems of Linear Equations.
10.3 Systems of Linear Equations: Matrices. A matrix is defined as a rectangular array of numbers, Column 1Column 2 Column jColumn n Row 1 Row 2 Row 3.
Matrices and Systems of Equations
Meeting 19 System of Linear Equations. Linear Equations A solution of a linear equation in n variables is a sequence of n real numbers s 1, s 2,..., s.
7.3 & 7.4 – MATRICES AND SYSTEMS OF EQUATIONS. I N THIS SECTION, YOU WILL LEARN TO  Write a matrix and identify its order  Perform elementary row operations.
Chapter 1 Systems of Linear Equations Linear Algebra.
10.4 Matrix Algebra 1.Matrix Notation 2.Sum/Difference of 2 matrices 3.Scalar multiple 4.Product of 2 matrices 5.Identity Matrix 6.Inverse of a matrix.
Math 1320 Chapter 3: Systems of Linear Equations and Matrices 3.2 Using Matrices to Solve Systems of Equations.
1 SYSTEM OF LINEAR EQUATIONS BASE OF VECTOR SPACE.
Gaussian Elimination Digital Lesson. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 Gaussian elimination with back-substitution.
College Algebra Chapter 6 Matrices and Determinants and Applications
Multivariable Linear Systems and Row Operations
Section 6.1 Systems of Linear Equations
Systems of linear equations
Gaussian Elimination and Gauss-Jordan Elimination
Gaussian Elimination and Gauss-Jordan Elimination
Solving Systems of Equations Using Matrices
MATHEMATICS Linear Equations
Chapter 8: Lesson 8.1 Matrices & Systems of Equations
Matrices and Systems of Equations
Gaussian Elimination and Gauss-Jordan Elimination
Larger Systems of Linear Equations and Matrices
Chapter 4 Systems of Linear Equations; Matrices
Matrix Solutions to Linear Systems
Chapter 1: Linear Equations in Linear Algebra
College Algebra Chapter 6 Matrices and Determinants and Applications
Chapter 4 Systems of Linear Equations; Matrices
Example 2B: Solving Linear Systems by Elimination
Section 8.1 – Systems of Linear Equations
Presentation transcript:

BAI CM20144 Applications I: Mathematics for Applications Mark Wood

BAI Quick refresher Worked examples Short test Book questions Linear Algebra with Applications – G. Williams Tutorial Structure

BAI Quick refresher Worked examples Short test Book questions Linear Algebra with Applications – G. Williams Revision requests me the week before if possible Tutorial Structure

BAI Gauss-Jordan Elimination

BAI Start with a system of linear equations Gauss-Jordan Elimination

BAI Start with a system of linear equations Write down the augmented matrix Gauss-Jordan Elimination

BAI Start with a system of linear equations Write down the augmented matrix Use elementary row operations Multiply a row by a nonzero constant Add a multiple of one row to another Swap two rows Gauss-Jordan Elimination

BAI Start with a system of linear equations Write down the augmented matrix Use elementary row operations Multiply a row by a nonzero constant Add a multiple of one row to another Swap two rows Aiming for reduced echelon form Rows of zeros are at the bottom All the other rows have leading 1s Each leading 1 is to the right of the one above Every column which contains a leading 1 has zeros elsewhere Gauss-Jordan Elimination

BAI Three possibilities Unique solution – read from right-hand column Many solutions – need to use parameters No solutions – will get 0 = 1 Gauss-Jordan Elimination

BAI Three possibilities Unique solution – read from right-hand column Many solutions – need to use parameters No solutions – will get 0 = 1 Can solve for many systems simultaneously by appending columns to the right-hand side of the augmented matrix. Gauss-Jordan Elimination

BAI Three possibilities Unique solution – read from right-hand column Many solutions – need to use parameters No solutions – will get 0 = 1 Can solve for many systems simultaneously by appending columns to the right-hand side of the augmented matrix. Algorithm Examples… Gauss-Jordan Elimination

BAI 4x 1 + 8x 2 – 12x 3 = 44 3x 1 + 6x 2 – 8x 3 = 32 -2x 1 - x 2 = -7 Gauss-Jordan Elimination

BAI 2x 1 - 4x x x 4 = 58 -x 1 + 2x 2 - 3x 3 + 2x 4 = -14 2x 1 - 4x 2 + 9x 3 - 6x 4 = 44 Gauss-Jordan Elimination

BAI x 1 - x 2 + 2x 3 = 3 2x 1 - 2x 2 + 5x 3 = 4 x 1 + 2x 2 - x 3 = -3 2x 2 + 2x 3 = 1 Gauss-Jordan Elimination

BAI x 1 - x 2 + 3x 3 = b 1 2x 1 - x 2 + 4x 3 = b 2 -x 1 + 2x 2 - 4x 3 = b 3 For b 1 = 8, 0, 3 in turn b b Gauss-Jordan Elimination