Your Success is Our Goal www.siemens.com/itps1 www.chemtech.com.br SHEAR STRESS ANALYSIS IN A ROTATOR-STATOR SYSTEM IX International PHOENICS Users Conference.

Slides:



Advertisements
Similar presentations
TWO STEP EQUATIONS 1. SOLVE FOR X 2. DO THE ADDITION STEP FIRST
Advertisements

Section 1.8 Homework questions?. Section Concepts 1.8 Linear Equations in Two Variables Slide 2 Copyright (c) The McGraw-Hill Companies, Inc. Permission.
Formulation of linear hydrodynamic stability problems
Advanced Piloting Cruise Plot.
Human Movement in a Fluid Medium
Chapter 1 The Study of Body Function Image PowerPoint
Finite Element Method CHAPTER 4: FEM FOR TRUSSES
Finite Element Method CHAPTER 8: FEM FOR PLATES & SHELLS
SPECIAL PURPOSE ELEMENTS
CHAPTER 1: COMPUTATIONAL MODELLING
Document #07-12G 1 RXQ Customer Enrollment Using a Registration Agent Process Flow Diagram (Switch) Customer Supplier Customer authorizes Enrollment.
Document #07-12G 1 RXQ Customer Enrollment Using a Registration Agent Process Flow Diagram (Switch) Customer Supplier Customer authorizes Enrollment.
Business Transaction Management Software for Application Coordination 1 Business Processes and Coordination.
Summary of Convergence Tests for Series and Solved Problems
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Title Subtitle.
Adding value through knowledge © NNC Limited September 2002International PHOENICS User Conference 1 A PHOENICS model of the hotbox region of an advanced.
SECOND ORDER MODELLING OF COMPOUND OPEN CHANNEL-FLOWS Laboratoire de Modélisation en Hydraulique et Environnement Prepared by : Olfa DABOUSSI Presened.
Your Success is Our Goal OPTIMIZATION OF HEAT TRANSFER ZONES IN DISTILLATION COLUMNS X International PHOENICS.
Your Success is Our Goal FURNACE TROUBLESHOOTING WITH PHOENICS IX International PHOENICS Users Conference Moscow,
Chemtech Development of an Application Oriented Interface for PHOENICS Authors : Ricardo Serfaty - Mechanical Eng., D. Sc. / Petrobras João Tornovsky -
Your Success is Our Goal Understanding the steel solidification in tundish nozzles X International PHOENICS Users Conference Melbourne, May 2004.
Phoenics User Conference on CFD May 2004 Vipac Engineers & Scientists Ltd COMPUTATIONAL FLUID DYNAMICS Simulation of Turbulent Flows and Pollutant Dispersion.
Calypso Construction Features

7 Applications of Integration
Chapter 11: Models of Computation
ABC Technology Project
1 Application of for Predicting Indoor Airflow and Thermal Comfort.
VOORBLAD.
1 Analysis of Random Mobility Models with PDE's Michele Garetto Emilio Leonardi Politecnico di Torino Italy MobiHoc Firenze.
Distributed Forces: Centroids and Centers of Gravity
© 2012 National Heart Foundation of Australia. Slide 2.
The x- and y-Intercepts
Instructor: André Bakker
Addition 1’s to 20.
STATIKA STRUKTUR Genap 2012 / 2013 I Made Gatot Karohika ST. MT.
25 seconds left…...
12 October, 2014 St Mungo's Academy 1 ADVANCED HIGHER MATHS REVISION AND FORMULAE UNIT 1.
SolidWorks Flow Simulation
Exponential and Logarithmic Functions
Copyright © Cengage Learning. All rights reserved.
Januar MDMDFSSMDMDFSSS
Copyright © Cengage Learning. All rights reserved.
Week 1.
We will resume in: 25 Minutes.
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
PSSA Preparation.
Essential Cell Biology
How Cells Obtain Energy from Food
McGraw-Hill©The McGraw-Hill Companies, Inc., 2001 Chapter 16 Integrated Services Digital Network (ISDN)
Copyright © Cengage Learning. All rights reserved.
Outline Overview of Pipe Flow CFD Process ANSYS Workbench
MULTLAB FEM-UNICAMP UNICAMP EVALUATING RESIDUALS AND IMBALANCE FORCES BY INFORM Residuals These are imbalances (errors) in the finite-volume equations.
Chapter 2 Introduction to Heat Transfer
Output - Derived Variables Derived Variables are quantities evaluated from the primitive (or solved) variables by PHOENICS. It means, PHOENICS first solve.
PTT 204/3 APPLIED FLUID MECHANICS SEM 2 (2012/2013)
Your Success is Our Goal INERTIZATION SYSTEM OF STEEL CASTING WITH PHOENICS IX International PHOENICS Users Conference.
1 Chapter 6 Flow Analysis Using Differential Methods ( Differential Analysis of Fluid Flow)
Abj 4.2.2: Pressure, Pressure Force, and Fluid Motion Without Flow [Q2 and Q3] Area as A Vector Component of Area Vector – Projected Area Net Area.
A Numerical Solution to the Flow Near an Infinite Rotating Disk White, Section MAE 5130: Viscous Flows December 12, 2006 Adam Linsenbardt.
Stokes Solutions to Low Reynolds Number Flows
CP502 Advanced Fluid Mechanics Flow of Viscous Fluids and Boundary Layer Flow Lectures 3 and 4.
Chapter 4 Fluid Mechanics Frank White
Navier - Stokes Equation
12. Navier-Stokes Applications
Presentation transcript:

Your Success is Our Goal SHEAR STRESS ANALYSIS IN A ROTATOR-STATOR SYSTEM IX International PHOENICS Users Conference Moscow, 24 th September 2002

Your Success is Our Goal INERTARGON_IX_IPUC_MOSKOW2002.ppt Slide 2 © IT PS 2002 Shear Stress IX International PHOENICS Users Conference Chemtech - A Siemens Company, Rio de Janeiro / RJ – Brazil Petrobras / CENPES, Rio de Janeiro / RJ – Brazil AUTHORS Flávio Martins de Queiroz Guimarães Bruno de Almeida Barbabela Luiz Eduardo Ganem Rubião Ricardo Serfaty

Your Success is Our Goal INERTARGON_IX_IPUC_MOSKOW2002.ppt Slide 3 © IT PS 2002 Shear Stress IX International PHOENICS Users Conference Vertical axis rotating device with eight test plates attached submerged into a viscous medium. Vertical axis rotating device with eight test plates attached submerged into a viscous medium. Axial symmetric – just one eighth of it has been simulated. Axial symmetric – just one eighth of it has been simulated. INTRODUCTION – THE SYSTEM

Your Success is Our Goal INERTARGON_IX_IPUC_MOSKOW2002.ppt Slide 4 © IT PS 2002 Shear Stress IX International PHOENICS Users Conference COMPUTATIONAL GRID The domain definition was one of the majors steps of the system setting-up. It was created as: Body-fitted coordinates; Body-fitted coordinates; Multi-block approach; Multi-block approach; Sliding interface between the blocks. Sliding interface between the blocks.

Your Success is Our Goal INERTARGON_IX_IPUC_MOSKOW2002.ppt Slide 5 © IT PS 2002 Shear Stress IX International PHOENICS Users Conference COMPUTATIONAL GRID

Your Success is Our Goal INERTARGON_IX_IPUC_MOSKOW2002.ppt Slide 6 © IT PS 2002 Shear Stress IX International PHOENICS Users Conference GENERAL SETTINGS All simulations were run on PHOENICS v3.4. The follow configuration was setting: Grid: Multi-block sliding-grid Grid: Multi-block sliding-grid Energy Equation: no Energy Equation: no Turbulence Model: Low-Reynolds k- model Turbulence Model: Low-Reynolds k- model Transient: no Transient: no Relaxation: By GROUND implementation Relaxation: By GROUND implementation Equation Formulation: GCV Equation Formulation: GCV

Your Success is Our Goal INERTARGON_IX_IPUC_MOSKOW2002.ppt Slide 7 © IT PS 2002 Shear Stress IX International PHOENICS Users Conference NEAR WALL SHEAR STRESS EVALUATION SHEAR STRESS

Your Success is Our Goal INERTARGON_IX_IPUC_MOSKOW2002.ppt Slide 8 © IT PS 2002 Shear Stress IX International PHOENICS Users Conference NEAR WALL VELOCITY GRADIENT PROBLEM: How to evaluate the near wall velocity gradients? SOLUTION: Finite – elements approach with a 6 (six) nodes quadrilateral element.

Your Success is Our Goal INERTARGON_IX_IPUC_MOSKOW2002.ppt Slide 9 © IT PS 2002 Shear Stress IX International PHOENICS Users Conference NEAR WALL VELOCITY GRADIENT For the solution of the gradient profile, the partial derivatives are solved as a sum of the variable node values pondered by the shape functions derived in respect to the spatial coordinates.

Your Success is Our Goal INERTARGON_IX_IPUC_MOSKOW2002.ppt Slide 10 © IT PS 2002 Shear Stress IX International PHOENICS Users Conference NEAR WALL VELOCITY GRADIENT A bidimensional local coordinate system (R and S spatial directions) was defined based on the heterogeneous derivatives. As shown below:

Your Success is Our Goal INERTARGON_IX_IPUC_MOSKOW2002.ppt Slide 11 © IT PS 2002 Shear Stress IX International PHOENICS Users Conference NEAR WALL VELOCITY GRADIENT First Case: NO WALL CONTACT

Your Success is Our Goal INERTARGON_IX_IPUC_MOSKOW2002.ppt Slide 12 © IT PS 2002 Shear Stress IX International PHOENICS Users Conference NEAR WALL VELOCITY GRADIENT First Case: NO WALL CONTACT

Your Success is Our Goal INERTARGON_IX_IPUC_MOSKOW2002.ppt Slide 13 © IT PS 2002 Shear Stress IX International PHOENICS Users Conference NEAR WALL VELOCITY GRADIENT Second Case: LOWER WALL

Your Success is Our Goal INERTARGON_IX_IPUC_MOSKOW2002.ppt Slide 14 © IT PS 2002 Shear Stress IX International PHOENICS Users Conference NEAR WALL VELOCITY GRADIENT Second Case: LOWER WALL

Your Success is Our Goal INERTARGON_IX_IPUC_MOSKOW2002.ppt Slide 15 © IT PS 2002 Shear Stress IX International PHOENICS Users Conference NEAR WALL VELOCITY GRADIENT Third Case: UPPER WALL

Your Success is Our Goal INERTARGON_IX_IPUC_MOSKOW2002.ppt Slide 16 © IT PS 2002 Shear Stress IX International PHOENICS Users Conference NEAR WALL VELOCITY GRADIENT Third Case: UPPER WALL

Your Success is Our Goal INERTARGON_IX_IPUC_MOSKOW2002.ppt Slide 17 © IT PS 2002 Shear Stress IX International PHOENICS Users Conference ANALYTICAL VALIDATION The Couette Flow This simulation consisted of the flow in the gap region between two concentric cylinders with the inner cylinder rotating with constant angular velocity, as shown in the figure below:

Your Success is Our Goal INERTARGON_IX_IPUC_MOSKOW2002.ppt Slide 18 © IT PS 2002 Shear Stress IX International PHOENICS Users Conference ANALYTICAL VALIDATION Navier – Stokes Equations

Your Success is Our Goal INERTARGON_IX_IPUC_MOSKOW2002.ppt Slide 19 © IT PS 2002 Shear Stress IX International PHOENICS Users Conference ANALYTICAL VALIDATION Assumptions & Constrains For an ideal flow, the two assumptions below are taken as true: In steady-state laminar flow, fluid moves following a fully circular profile with null radial and axial velocity components. In steady-state laminar flow, fluid moves following a fully circular profile with null radial and axial velocity components. Since the system is axially symmetric, the pressure gradient in the angular direction is considered null. Since the system is axially symmetric, the pressure gradient in the angular direction is considered null.

Your Success is Our Goal INERTARGON_IX_IPUC_MOSKOW2002.ppt Slide 20 © IT PS 2002 Shear Stress IX International PHOENICS Users Conference ANALYTICAL VALIDATION Navier – Stokes Equations The solution of the Navier – Stokes Equations for a Couette like flow were described following:

Your Success is Our Goal INERTARGON_IX_IPUC_MOSKOW2002.ppt Slide 21 © IT PS 2002 Shear Stress IX International PHOENICS Users Conference ANALYTICAL VALIDATION Boundary Conditions For the case of inner cylinder rotating with angular velocity and the outer cylinder stationary: At r = kR (inner rotating cylinder) v = kR At r = kR (inner rotating cylinder) v = kR At r = R (outer cylinder) v = 0 At r = R (outer cylinder) v = 0 Integrating the angular component between the boundary conditions limits:

Your Success is Our Goal INERTARGON_IX_IPUC_MOSKOW2002.ppt Slide 22 © IT PS 2002 Shear Stress IX International PHOENICS Users Conference ANALYTICAL VALIDATION Shear Stress Components The shear stress components in cylindrical-polar coordinates are given by:

Your Success is Our Goal INERTARGON_IX_IPUC_MOSKOW2002.ppt Slide 23 © IT PS 2002 Shear Stress IX International PHOENICS Users Conference ANALYTICAL VALIDATION Shear Stress Evaluation For a Couette flow in the gap region:

Your Success is Our Goal INERTARGON_IX_IPUC_MOSKOW2002.ppt Slide 24 © IT PS 2002 Shear Stress IX International PHOENICS Users Conference ANALYTICAL VALIDATION Performed for an specific set of physical- chemical properties at a constant rotating speed. Performed for an specific set of physical- chemical properties at a constant rotating speed. Since the analytical solution is laminar, no turbulence model was considered in the simulation. Since the analytical solution is laminar, no turbulence model was considered in the simulation.

Your Success is Our Goal INERTARGON_IX_IPUC_MOSKOW2002.ppt Slide 25 © IT PS 2002 Shear Stress IX International PHOENICS Users Conference FIELD TEST VALIDATION The velocity profile and the rotating wall shear stress were compared for both cases in order to verify the precision of the system.

Your Success is Our Goal INERTARGON_IX_IPUC_MOSKOW2002.ppt Slide 26 © IT PS 2002 Shear Stress IX International PHOENICS Users Conference FINAL RESULTS To provide more detailed and easy to get information about the resulting shear stress profile, additional code was programmed into GROUND file to print treated data to the end of the RESULT file. The following information is provided: Average shear stress on the south surface (SAVG_in) and on north surface of the plate (SAVG_out); Average shear stress on the south surface (SAVG_in) and on north surface of the plate (SAVG_out); Shear stress at the center of the plate on the south surface (SHST_in) and on the north surface (SHST_out); Shear stress at the center of the plate on the south surface (SHST_in) and on the north surface (SHST_out); Shear stress at each cell of the south surface (slab by slab); Shear stress at each cell of the south surface (slab by slab); Shear stress at each cell of the north surface (slab by slab); Shear stress at each cell of the north surface (slab by slab);

Your Success is Our Goal INERTARGON_IX_IPUC_MOSKOW2002.ppt Slide 27 © IT PS 2002 Shear Stress IX International PHOENICS Users Conference CONCLUSIONS The results showed good quantitative agreement with analytical data though several sweeps are need to guarantee the convergence. The results showed good quantitative agreement with analytical data though several sweeps are need to guarantee the convergence. Although the resulting shear stress profile for de k- turbulence model seems to fit better near the walls, it was more unstable and harder to converge than the standard k- one. Although the resulting shear stress profile for de k- turbulence model seems to fit better near the walls, it was more unstable and harder to converge than the standard k- one. Also, it was verified that near the open borders of the plate the shear stress is usually higher because of an increase in the turbulence effects at these elements. It was important to point out that in some cases the shear stress near the borders seems to be over-predicted and unfortunately it was impossible to check experimentally this data Also, it was verified that near the open borders of the plate the shear stress is usually higher because of an increase in the turbulence effects at these elements. It was important to point out that in some cases the shear stress near the borders seems to be over-predicted and unfortunately it was impossible to check experimentally this data

Your Success is Our Goal INERTARGON_IX_IPUC_MOSKOW2002.ppt Slide 28 © IT PS 2002 Shear Stress IX International PHOENICS Users Conference CONCLUSIONS Finally this case was used as a base for a general q1 template and implemented in a Human-Machine Interface (HMI) in order to turn typical sensibility analysis into an easy task, allowing series of tests to be performed with very few clicks of the mouse. This enables even new users or equipment designers who may wish not to invest in training in PHOENICS to perform similar studies. Finally this case was used as a base for a general q1 template and implemented in a Human-Machine Interface (HMI) in order to turn typical sensibility analysis into an easy task, allowing series of tests to be performed with very few clicks of the mouse. This enables even new users or equipment designers who may wish not to invest in training in PHOENICS to perform similar studies.