Первичный нуклеосинтез, образование D и содержание HD/H 2 в межзвездных облаках, существовавших 12 млрд. лет назад Д.А. Варшалович, А.В. Иванчик, С.А.

Slides:



Advertisements
Similar presentations
Ch Cosmology Part 2 The Beginning & the End.
Advertisements

First Stars, Quasars, and the Epoch of Reionization Jordi Miralda Escudé Institut de Ciències de l’Espai (IEEC-CSIC, ICREA), Barcelona. Instituto de Astrofísica.
Eloisa Menegoni ICRA and INFN, University of Rome “La Sapienza” Cosmological constraints on variations of fundamental constants Miami2010, Fort Lauderdale,
Matter Content of the Universe David Spergel March 2006 Valencia, Spain.
Cosmological Reionization Nick Gnedin. Co-starring Gayler Harford Katharina Kohler Peter Shaver Mike Shull Massimo Ricotti.
UNIVERSE CHAPTER BIG BANG The big bang theory is the main cosmological model for the earliest known time of the Universe. It shows us how the universe.
Parameterizing the Age of the Universe The Age of Things: Sticks, Stones and the Universe
PHY th century cosmology 1920s – 1990s (from Friedmann to Freedman)  theoretical technology available, but no data  20 th century: birth of observational.
The Big Bang Or… The Standard Model. Precepts of the standard model The laws of Physics are the same throughout the Universe. The Universe is expanding.
Lecture 3: Big Bang Nucleosynthesis Last time: particle anti-particle soup --> quark soup --> neutron-proton soup. Today: –Form 2 D and 4 He –Form heavier.
Age, Evolution, and Size of the Cosmos Szydagis and Lunin.
The Evidence for the Big Bang Student Resource Sheet 5 Science and Religion in Schools: Unit 4a.
Time dependence of SM parameters. Outline Dirac´s hypothesis SM parameters Experimental access to time dependence  laboratory measurements  Quasar absorption.
Galaxies and Cosmology 5 points, vt-2007 Teacher: Göran Östlin Lectures
PRE-SUSY Karlsruhe July 2007 Rocky Kolb The University of Chicago Cosmology 101 Rocky I : The Universe Observed Rocky II :Dark Matter Rocky III :Dark Energy.
Quintessence – Phenomenology. How can quintessence be distinguished from a cosmological constant ?
Astro-2: History of the Universe Lecture 8; May
BBN, NEUTRINOS, AND THE CBR Gary Steigman (with J. P. Kneller & V. Simha) Center for Cosmology and Astro-Particle Physics Ohio State University PPC 2007,
The origin of the universe. Olbers’s Paradox Why is the sky dark at night? If the universe is infinite, then every line of sight should end on a star.
Cosmology I & II Expanding universe Hot early universe Nucleosynthesis Baryogenesis Cosmic microwave background (CMB) Structure formation Dark matter,
The Big Bang Or… The Standard Model. Precepts of the standard model The laws of Physics are the same throughout the Universe. The Universe is expanding.
Space Between the Stars: Properties of the Interstellar Medium Steven R. Spangler University of Iowa.
Mini-workshop Fundamental Physics ESO/Garching Sep, 2014 С.А. Левшаков Физико-технический институт им. А.Ф. Иоффе Санкт-Петербург.
Different physical properties contribute to the density and temperature perturbation growth. In addition to the mutual gravity of the dark matter and baryons,
Relic Neutrinos, thermal axions and cosmology in early 2014 Elena Giusarma arXiv: Based on work in collaboration with: E. Di Valentino, M. Lattanzi,
BIG BANG NUCLEOSYNTHESIS CONFRONTS COSMOLOGY AND PARTICLE PHYSICS Gary Steigman Departments of Physics and Astronomy Center for Cosmology and Astro-Particle.
Cosmology and Dark Matter I: Einstein & the Big Bang by Jerry Sellwood.
AS2001 / 2101 Chemical Evolution of the Universe Keith Horne Room 315A
PREDRAG JOVANOVIĆ AND LUKA Č. POPOVIĆ ASTRONOMICAL OBSERVATORY BELGRADE, SERBIA Gravitational Lensing Statistics and Cosmology.
Nick Gnedin (Once More About Reionization)
Andrea Ferrara SISSA/International School for Advanced Studies, Trieste Cosmic Dawn and IGM Reionization.
AS2001 Chemical Evolution of the Universe Keith Horne 315a
Cosmology, Cosmology I & II Fall Cosmology, Cosmology I & II  Cosmology I:  Cosmology II: 
FRW-models, summary. Properties of the Universe set by 3 parameters:  m,  ,  k of Which only 2 are Independent:  m +   +  k = 1.
The Universe is expanding The Universe is filled with radiation The Early Universe was Hot & Dense  The Early Universe was a Cosmic Nuclear Reactor!
MATTEO VIEL THE LYMAN-  FOREST AS A COSMOLOGICAL PROBE Contents and structures of the Universe – La Thuile (ITALY), 19 March 2006.
The Big Bang: what happened, and when did it happen?
PHY306 1 Modern cosmology 3: The Growth of Structure Growth of structure in an expanding universe The Jeans length Dark matter Large scale structure simulations.
Big Bang Nucleosynthesis (BBN) Eildert Slim. Timeline of the Universe 0 sec Big Bang: Start of the expansion secPlanck-time: Gravity splits off.
Collaborators Blair Savage, Bart Wakker (UW-Madison) Blair Savage, Bart Wakker (UW-Madison) Ken Sembach (STScI) Ken Sembach (STScI) Todd Tripp (UMass)
New Nuclear and Weak Physics in Big Bang Nucleosynthesis Christel Smith Arizona State University Arizona State University Erice, Italy September 17, 2010.
BBN: Constraints from CMB experiments Joanna Dunkley University of Oxford IAUS Geneva, Nov
The Distributions of Baryons in the Universe and the Warm Hot Intergalactic Medium Baryonic budget at z=0 Overall thermal timeline of baryons from z=1000.
Reionisation and the cross-correlation between the CMB and the 21-cm line fluctuations Hiroyuki Tashiro IAS, ORSAY 43rd Rencontres de Moriond La Thuile,
Structure Formation in the Universe Concentrate on: the origin of structure in the Universe How do we make progress?How do we make progress? What are the.
The Beginning of Time: Evidence for the Big Bang & the Theory of Inflation.
Cosmology and Dark Matter III: The Formation of Galaxies Jerry Sellwood.
Dark Energy and baryon oscillations Domenico Sapone Université de Genève, Département de Physique théorique In collaboration with: Luca Amendola (INAF,
BBN abundance observations Karl Young and Taryn Heilman Astronomy 5022 December 4, 2014.
Lyman Alpha Spheres from the First Stars observed in 21 cm Xuelei Chen (Beijing) Jordi Miralda Escudé (IEEC, Barcelona).
High-mass X-ray binaries in the inner part of the Galaxy A.Lutovinov, M.Revnivtsev, M.Gilfanov, S.Molkov, P.Shtykovskiy, R.Sunyaev (IKI, Moscow/MPA, Garching)
The Universe is expanding The Universe is filled with radiation The Early Universe was Hot & Dense  The Early Universe was a Cosmic Nuclear Reactor!
Constraint on Cosmic Reionization from High-z QSO Spectra Hiroi Kumiko Umemura Masayuki Nakamoto Taishi (University of Tsukuba) Mini Workshop.
Первичный нуклеосинтез и межзвездные молекулярные H 2 /HD облака на больших красных смещениях Д.Варшалович 1, А.Иванчик 1, П.Петижан Первичный.
The cross-correlation between CMB and 21-cm fluctuations during the epoch of reionization Hiroyuki Tashiro N. Aghanim (IAS, Paris-sud Univ.) M. Langer.
Cosmological aspects of neutrinos (II) Sergio Pastor (IFIC Valencia) JIGSAW 2007 TIFR Mumbai, February 2007 ν.
Looking for trees in the forest Diavolezza meeting feb Ruth Buning (LCVU, Amsterdam) Wim Ubachs (LCVU, Amsterdam) Michael Murphy (Swinburne University,
Wilkinson Microwave Anisotropy Probe (WMAP) By Susan Creager April 20, 2006.
Smoke This! The CMB, the Big Bang, Inflation, and WMAP's latest results Spergel et al, 2006, Wilkinson Microwave Anisotropy Probe (WMAP) Three Year results:
The Dark Side of the Universe
WEIGHING THE UNIVERSE Neta A. Bahcall Princeton University.
Lectures on galaxies and cosmology
The Cosmic Microwave Background and the WMAP satellite results
The Big Bang The Big Bang
Annihilation (with symmetry breaking) quark soup
QCD & cosmology The quest for cosmological signals of QCD dynamics
On Deuterated Polycyclic Aromatic Hydrocarbons in Space
NEUTRINOS AND BBN ( & THE CMB) Gary Steigman
The Big Bang The Big Bang
PROBING THE UNIVERSE AT 20 MINUTES AND 400 THOUSAND YEARS
Presentation transcript:

Первичный нуклеосинтез, образование D и содержание HD/H 2 в межзвездных облаках, существовавших 12 млрд. лет назад Д.А. Варшалович, А.В. Иванчик, С.А. Балашев Физико-технический институт им. А.Ф. Иоффе РАН 2009

BBN Epoch: Evolution of Nuclear Composition t ~ 3-5 min (D/H) max ~ 0.7·10 -2 kT BBN ~ 70 keV n B (BBN) ~ cm -3 n  (BBN) ~ cm -3

Physical Parameters Our Epoch BBN Epoch t ~ 14 Gyrt ~ 3-5 m T 0 = K (1+z 0 ) = 1 T B = 0.8  10 9 K (1+z B ) = 3.0  10 8 n  = 411 cm -3   = 0.26 eV cm -3 n  = cm -3   = 2  eV cm -3 n B = 4.11   10 cm -3  B = 39  10 eV cm -3 n B =  10 cm -3  B =  10 eV cm -3  10  (n B /n  ) = 6.0  0.5 (CMBR)

BBN Yield: Light Nuclei Abundances Standard Model n B ( BBN ) is the only free parameter [D] is the most sensitive to n B (BBN) Under Adiabatic Expansion Fraction of Baryon Matter The Standard Matter Fraction is ~ 5% !!! M H /M B ~0.76 M He4 /M B ~0.24 M Z /M B <10 -4 Contemporary density

CMBR: T 0 =2.726 K,   (0)=0.26 eV/cm 3, n  (0)=411 cm -3 Redshifted Thermal Radiation of the Primordial Plasma at the Recombination Epoch: t R ~ yr, T R ~ 3000 K, n B (R) ~ 300 cm -3, n  (R) ~5·10 11 cm -3 Anisotropy of CMBR CMBR fluctuations  T 0 /T 0 ~10 -5 display a beginning stage of LSS formation. Correlation of the fluctuations Comparison of the theory with observations by WMAP gives: Power spectrum of CMBR fluctuations

Angular size dependencies on the Space Curvature

DI/HI Atomic Lines in QSO Absorption Spectra Ly   ÅH I ÅD I  (H I) /  (D I) = [D I] / [H I] (2.0±0.5)   Webb et al (2.6±0.4)   Kirkman et al Primordial Nucleosynthesis  n B /n      h 2  Const(t)  B  0.044±0.004 (Burles et al. 2001) Difficulties of DI/ HI line identification

European South Observatory : Very Large Telescope

H 2 absorption lines imprinted in QSO spectrum (z abs = ) Varshalovich, Ivanchik, Petitjean et al., Astron Letters 27, 683, 2001

HD absorption lines imprinted in QSO spectrum (z abs = )

Interstellar Molecular Clouds 12 Gyr ago: [H 2 ] ~ 4.8·10 19 cm -2 [HD] ~ 3.4·10 15 cm -2 Our Epoch: [H 2 ] ~ 3.4·10 20 cm -2 [HD] ~ 2.1·10 14 cm -2

Molecular cloud at z= n Molecular column densities n HD/H 2 molecular abundance ratio n The limit of HD/H 2 chemistry: D/H isotope ratio

D/H relative abundances: QSO observational data

BBN Theory n Baryon/Photon number density ratio corresponding to the D/H isotope ratio n Under Adiabatic Expansion n So, the number density of baryons (average) at our epoch The average fraction of baryon matter at our epoch is

Observed and predicted BBN abundances 4 He 2 D 3 He 7 Li CMBR After Big Bang BBN 3-5 min CMBR 3.8  10 5 yr QSO Abs. 8.5  10 8 yr Our Galaxy 1.4  yr D is destroyed in stars: D/H decreases during galaxy evolution with cosmological time

Conclusions I n n HD-molecules at high redshift are detected for the first time. n n Primeval H 2 -HD molecular cloud was discovered that had existed 12 Gyr ago. n n The ratio of [HD]/[H 2 ] in the primeval cloud was significantly larger than that is observed in the interstellar clouds of our Galaxy.

n We obtain D/H isotope ratio by independent method from HD/H 2 abundances and include it into the BBN code. The result is n The fraction of baryon matter at our epoch is which coincides (within the errors) with  B from CMBR WMAP Conclusions II

Conclusions III n n Nevertheless, our most probable D/H value is a bit larger than the one commonly accepted today. n n This value is in better agreement with other observational data, including 4 He, 3 He, 7 Li.

Н 2 rotational level populations N J=5 = (2.3±0.3)   cm -2 N J=4 = (5.0±0.6)   cm -2 N J=3 = (2.3±0.5)   cm -2 N J=2 = (6.0±3.0)   cm -2 N J=1 = (1.9±0.1)   cm -2 N J=0 = (2.8±0.1)   cm -2 N(H 2 ) =  N J = = (4.8±0.2)   cm -2

Radiative transfer of H 2 lines

Changing populations of levels with optical depth Balashev, Varshalovich, Ivanchik, Astron Letters 35, 150, 2009

Nonstandard curves of growth Balashev, Varshalovich, Ivanchik, Astron Letters 35, 150, 2009