Intelligent Database Systems Lab Presenter: WU, MIN-CONG Authors: Yongzheng Zhang, Rajyashree Mukherjee, Benny Soetarman 2012, ACM Concept Extraction for.

Slides:



Advertisements
Similar presentations
Intelligent Database Systems Lab Presenter: WU, MIN-CONG Authors: Abdelghani Bellaachia and Mohammed Al-Dhelaan 2012, WIIAT NE-Rank: A Novel Graph-based.
Advertisements

Intelligent Database Systems Lab Presenter : YU-TING LU Authors : Harun Ug˘uz 2011.KBS A two-stage feature selection method for text categorization by.
Intelligent Database Systems Lab Presenter: WU, JHEN-WEI Authors: Jorge Gorricha, Victor Lobo CG Improvements on the visualization of clusters in.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Validating Transliteration Hypotheses Using the Web: Web.
Intelligent Database Systems Lab Presenter: NENG-KAI, HONG Authors: G. PANKAJ JAIN, VARADRAJ P. GURUPUR, JENNIFER L. SCHROEDER, AND EILEEN D. FAULKENBERRY.
CONTENT-BASED BOOK RECOMMENDING USING LEARNING FOR TEXT CATEGORIZATION TRIVIKRAM BHAT UNIVERSITY OF TEXAS AT ARLINGTON DATA MINING CSE6362 BASED ON PAPER.
Finding Advertising Keywords on Web Pages Scott Wen-tau YihJoshua Goodman Microsoft Research Vitor R. Carvalho Carnegie Mellon University.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Quality evaluation of product reviews using an information.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Fast exact k nearest neighbors search using an orthogonal search tree Presenter : Chun-Ping Wu Authors.
Intelligent Database Systems Lab Presenter: MIN-CHIEH HSIU Authors: NHAT-QUANG DOAN ∗, HANANE AZZAG, MUSTAPHA LEBBAH 2013 NN Growing self-organizing trees.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. BNS Feature Scaling: An Improved Representation over TF·IDF for SVM Text Classification Presenter : Lin,
Intelligent Database Systems Lab Presenter : CHANG, SHIH-JIE Authors : Shih-Hwa Liu*,Gwo-Guang Lee 2013.CE Using a concept map knowledge management system.
Intelligent Database Systems Lab Presenter : YAN-SHOU SIE Authors : JEROEN DE KNIJFF, FLAVIUS FRASINCAR, FREDERIK HOGENBOOM DKE Data & Knowledge.
Intelligent DataBase System Lab, NCKU, Taiwan Josh Jia-Ching Ying 1, Eric Hsueh-Chan Lu 2 and Vincent S. Tseng 1 1 Institute of Computer Science and Information.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Evaluation of novelty metrics for sentence-level novelty mining Presenter : Lin, Shu-Han Authors : Flora.
Intelligent Database Systems Lab Presenter : WU, MIN-CONG Authors : Jorge Villalon and Rafael A. Calvo 2011, EST Concept Maps as Cognitive Visualizations.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Web usage mining: extracting unexpected periods from web.
Intelligent Database Systems Lab Presenter: WU, MIN-CONG Authors: Zhiyuan Liu, Wenyi Huang, Yabin Zheng and Maosong Sun 2010, ACM Automatic Keyphrase Extraction.
Intelligent Database Systems Lab Presenter: WU, MIN-CONG Authors: Zhiyuan Liu, Xinxiong Chen, Yabin Zheng, Maosong Sun 2011, FCCNLL Automatic Keyphrase.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. OpinionMiner: A Novel Machine Learning System for Web Opinion Mining and Extraction Presenter : Jiang-Shan.
Intelligent Database Systems Lab Presenter : JHOU, YU-LIANG Authors :Shady Shehata, Fakhri Karray, Mohamed S. Kamel, Fellow 2012, IEEE An Efficient Concept-Based.
Intelligent Database Systems Lab Presenter : YAN-SHOU SIE Authors Mohamed Ali Hadj Taieb *, Mohamed Ben Aouicha, Abdelmajid Ben Hamadou KBS Computing.
Query and Analysis on the document and customer/item bag card of the DataDex Kellie Erickson.
Intelligent Database Systems Lab Presenter : JIAN-REN CHEN Authors : Sheng-Tun Li a,b,*, Fu-Ching Tsai a 2013, KBS A fuzzy conceptualization model for.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. A language modeling framework for expert finding Presenter : Lin, Shu-Han Authors : Krisztian Balog,
Intelligent Database Systems Lab N.Y.U.S.T. I. M. A semantic similarity metric combining features and intrinsic information content Presenter: Chun-Ping.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Automatic Recommendations for E-Learning Personalization.
Intelligent Database Systems Lab Presenter : Kung, Chien-Hao Authors : Yoong Keok Lee and Hwee Tou Ng 2002,EMNLP An Empirical Evaluation of Knowledge Sources.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Concept similarity in Formal Concept Analysis-An information.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. An information-pattern-based approach to novelty detection Presenter : Lin, Shu-Han Authors : Xiaoyan.
Intelligent Database Systems Lab Presenter : Chang,Chun-Chih Authors : Youngjoong Ko, Jungyun Seo 2009, IPM Text classification from unlabeled documents.
Intelligent Database Systems Lab Presenter : JIAN-REN CHEN Authors : Cihan Kaleli, Huseyin Polat 2012, KBS Privacy-preserving SOM-based recommendations.
1 Mining the Web to Determine Similarity Between Words, Objects, and Communities Author : Mehran Sahami Reporter : Tse Ho Lin 2007/9/10 FLAIRS, 2006.
Intelligent Database Systems Lab Presenter : Kung, Chien-Hao Authors : Medhdi Khashei, Mehdi Bijari 2011, ASOC A novel hybridization of artificial neural.
Intelligent Database Systems Lab Presenter: Wu, Jhen-Wei Authors: Fabian Bürger, Josef Pauli ICPRAM. Representation Optimization with Feature Selection.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 2007.SIGIR.8 New Event Detection Based on Indexing-tree.
Intelligent Database Systems Lab Presenter : Chang,Chun-Chih Authors : David Milne *, Ian H. Witten 2012, AI An open-source toolkit for mining Wikipedia.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Utilizing Marginal Net Utility for Recommendation in E-commerce.
Intelligent Database Systems Lab Presenter: CHANG, SHIH-JIE Authors: Bui Quang Hung, Masanori Otsubo, Yoshinori Hijikata, Shogo Nishida 2010.WIA. HITS.
Intelligent Database Systems Lab Presenter: CHANG, SHIH-JIE Authors: Kevin Meijer, Flavius Frasincar, Frederik Hogenboom 2014.DSS. A semantic approach.
Intelligent Database Systems Lab Advisor : Dr. Hsu Graduate : Chien-Shing Chen Author : Juan D.Velasquez Richard Weber Hiroshi Yasuda 國立雲林科技大學 National.
Intelligent Database Systems Lab Presenter : WU, MIN-CONG Authors : YUNG-MING LI, TSUNG-YING LI 2013, DSS Deriving market intelligence from microblogs.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Improving the performance of personal name disambiguation.
Intelligent Database Systems Lab Presenter: CHANG, SHIH-JIE Authors: Luca Cagliero, Paolo Garza 2013.DKE. Improving classification models with taxonomy.
Intelligent Database Systems Lab Presenter : JIAN-REN CHEN Authors : Wen Zhang, Taketoshi Yoshida, Xijin Tang 2011.ESWA A comparative study of TF*IDF,
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Validity index for clusters of different sizes and densities Presenter: Jun-Yi Wu Authors: Krista Rizman.
Intelligent Database Systems Lab Presenter: CHANG, SHIH-JIE Authors: Longzhuang Li, Yi Shang, Wei Zhang 2002.ACM. Improvement of HITS-based Algorithms.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. 1 Mining knowledge from natural language texts using fuzzy associated concept mapping Presenter : Wu,
Intelligent Database Systems Lab Presenter : CHANG, SHIH-JIE Authors : Ya-Han Hu, Fan Wu a, Chia-Lun Lo, Chun-Tien Tai b 2012.AIM. Predicting warfarin.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Direct mining of discriminative patterns for classifying.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. 1 Identifying Domain Expertise of Developers from Source Code Presenter : Wu, Jia-Hao Authors : Renuka.
Intelligent Database Systems Lab Presenter : Chuang, Kai-Ting Authors : Rafael Odon de Alencar, Clodoveu Augusto Davis Jr., Marcos André Gonçalves 2010,
Intelligent Database Systems Lab Presenter: NENG-KAI, HONG Authors: HUAN LONG A, ZIJUN ZHANG A, ⇑, YAN SU 2014, APPLIED ENERGY Analysis of daily solar.
Intelligent Database Systems Lab Presenter : WU, MIN-CONG Authors : STEPHEN T. O’ROURKE, RAFAEL A. CALVO and Danielle S. McNamara 2011, EST Visualizing.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 TIARA: A Visual Exploratory Text Analytic System Presenter.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Predicting corporate bankruptcy using a self-organizing map: An empirical study to improve the forecasting.
Intelligent Database Systems Lab Presenter: YU-TING LU Authors: Christopher C. Yang and Tobun Dorbin Ng TSMCA Analyzing and Visualizing Web Opinion.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Community self-Organizing Map and its Application to Data Extraction Presenter: Chun-Ping Wu Authors:
Intelligent Database Systems Lab Presenter: CHANG, SHIH-JIE Authors: Tao Liu, Zheng Chen, Benyu Zhang, Wei-ying Ma, Gongyi Wu 2004.ICDM. Improving Text.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Discovering Interesting Usage Patterns in Text Collections:
Intelligent Database Systems Lab Presenter : JHOU, YU-LIANG Authors : Jae Hwa Lee, Aviv Segev 2012 CE Knowledge maps for e-learning.
Intelligent Database Systems Lab Presenter: YU-TING LU Authors: Junping Zhang, Hua Huang and Jue Wang IEEE INTELLIGENT SYSTEMS Manifold Learning.
Intelligent Database Systems Lab Presenter: YU-TING LU Authors: Vittorio Carlei, Massimiliano Nuccio PRL Mapping industrial patterns in spatial agglomeration:
Intelligent Database Systems Lab Presenter : Chang,Chun-Chih Authors : Emilio Corchado, Bruno Baruque 2012 NeurCom WeVoS-ViSOM: An ensemble summarization.
Intelligent Database Systems Lab Presenter : YU-TING LU Authors : Hsin-Chang Yang, Han-Wei Hsiao, Chung-Hong Lee IPM Multilingual document mining.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. A method of extracting malicious expressions in bulletin board systems by using context analysis Presenter:
Research Progress Kieu Que Anh School of Knowledge, JAIST.
Intelligent Database Systems Lab Presenter: YU-TING LU Authors: Yong-Bin Kang, Pari Delir Haghighi, Frada Burstein ESA CFinder: An intelligent key.
Arabic Text Categorization Based on Arabic Wikipedia
Using lexical chains for keyword extraction
Presentation transcript:

Intelligent Database Systems Lab Presenter: WU, MIN-CONG Authors: Yongzheng Zhang, Rajyashree Mukherjee, Benny Soetarman 2012, ACM Concept Extraction for Online Shopping

Intelligent Database Systems Lab Outlines Motivation Objectives Methodology Experiments Conclusions Comments 1

Intelligent Database Systems Lab Motivation In order to provide a more streamlined user experience in shopping related research, it is critical for e-commerce sites to accurately identify what a Web page is talking about. 2

Intelligent Database Systems Lab Objectives We investigate two concept extraction methods ACE and KEA in the online shopping context. We discuss how to upgrade ACE with major improvements into ICE. 3

Intelligent Database Systems Lab Methodology - ACE ACE ICE KEA 5

Intelligent Database Systems Lab Methodology - ACE ACE ICE KEA ACE ICE KEA Trem frequency 6

Intelligent Database Systems Lab Methodology - ACE ACE ICE KEA ACE HTML Scorer TF Scorer ACE ICE KEA Tokenization Concept Miner Concept Derivation 7

Intelligent Database Systems Lab Methodology - ACE ACE ICE KEA ACE HTML Scorer ACE ICE KEA Tokenization Concept Miner Concept Derivation TF Scorer 8

Intelligent Database Systems Lab Methodology - ACE ACE ICE KEA ACE TF Scorer ACE ICE KEA Tokenization Concept Miner Concept Derivation HTML Scorer 9

Intelligent Database Systems Lab ACE ICE KEA Methodology - ICE ACE ICE ACE ICE KEA 10

Intelligent Database Systems Lab ACE ICE KEA Methodology - ICE ACE ICE ACE ICE KEA 11

Intelligent Database Systems Lab ACE ICE KEA Methodology - ICE ACE ICE ACE ICE KEA cell phone Home cell phone home cell phone home 12

Intelligent Database Systems Lab ACE ICE KEA Methodology - ICE ACE ICE ACE ICE KEA Baseball Professional Baseball Baseball Players Professional Baseball Players 13

Intelligent Database Systems Lab Baseball Professional Baseball Professional Baseball Players ACE ICE KEA Methodology - ICE ACE ICE ACE ICE KEA Baseball Players Baseball Players 14

Intelligent Database Systems Lab ACE ICE KEA Methodology - ICE ACE ICE ACE ICE KEA Emphasis scorer ACE HTML Scorer TF Scorer Concept Miner 15

Intelligent Database Systems Lab ACE ICE KEA Methodology - ICE ACE ICE ACE ICE KEA ACE HTML Scorer TF Scorer Concept Miner 15 overlapping title Emphasis scorer

Intelligent Database Systems Lab ACE ICE KEA Methodology - ICE ACE ICE ACE ICE KEA Porter stemming Baseball baseballs Baseballs baseball 17

Intelligent Database Systems Lab ACE ICE KEA Methodology - KEA ACE ICE KEA ACE Human authored TF-IDF first appearance Naïve Bayes model 18

Intelligent Database Systems Lab Experiment 11 Evaluation framework ACE V.S ICE T T B B λ λ ICE V.S KEA DocumentTopic 100 shopping related Web pagesDell, HP, and Canon 19

Intelligent Database Systems Lab Experiment 11 Evaluation framework ICE V.S KEA DocumentTopic 100 shopping related Web pagesDell, HP, and Canon ACE V.S ICE T T B B λ λ [B,T] 20

Intelligent Database Systems Lab Experiment 11 Evaluation framework DocumentTopic 100 shopping related Web pagesDell, HP, and Canon ACE V.S ICE T T B B λ λ ICE V.S KEA KEA 50 Web pages for training ICE precisionrecallF1-measure ICE KEA

Intelligent Database Systems Lab Conclusions The experimental results demonstrate that ICE significantly outperforms KEA in concept extraction for online shopping. 22

Intelligent Database Systems Lab Comments Advantages – ICE is an unsupervised method that doesn’t need to Human-authored keyphrase. Applications – online shopping, concept extraction, automatic keyphrase extraction. 23