The Pythagorean Theorem

Slides:



Advertisements
Similar presentations
The Pythagorean Theorem
Advertisements

The Pythagorean Theorem and its Converse
The Pythagorean Theorem is probably the most famous mathematical relationship. As you learned in Lesson 1-6, it states that in a right triangle, the sum.
Objectives Use the Pythagorean Theorem and its converse to solve problems. Use Pythagorean inequalities to classify triangles.
The Pythagorean Theorem Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz Holt McDougal Geometry Pythagorean.
5.7 The Pythagorean Theorem. a 2 + b 2 = c 2 The Pythagorean Theorem.
EQ: How can we use the Pythagoren Theorem and Triangle Inequalities to identify a triangle?
The Pythagorean Theorem
8-1 The Pythagorean Theorem and Its Converse. Parts of a Right Triangle In a right triangle, the side opposite the right angle is called the hypotenuse.
The Pythagorean Theorem
8.1 Pythagorean Theorem and Its Converse
Objectives Use the Pythagorean Theorem and its converse to solve problems. Use Pythagorean inequalities to classify triangles.
4-9 The Pythagorean Theorem Warm Up Warm Up California Standards California Standards Lesson Presentation Lesson PresentationPreview.
The Converse of the Pythagorean Theorem 9-3
The Pythagorean Theorem
Power Point for 1/24.
Pythagorean Theorem 5.4. Learn the Pythagorean Theorem. Define Pythagorean triple. Learn the Pythagorean Inequality. Solve problems with the Pythagorean.
Objective: To use the Pythagorean Theorem and its converse.
Warm Up For Exercises 1 and 2, find the value of x. Give your answer in simplest radical form
Today’s Class Do now: – Work on Warm UP – Get out HW Objective – SWBAT apply the Pythagorean theorem to solve for missing side lengths – SWBAT apply the.
C CHAPTER The Pythagorean Theorem. Objectives Use the Pythagorean Theorem and its converse to solve problems. Use Pythagorean inequalities to classify.
5-Minute Check on Lesson 7-1 Transparency 7-2 Click the mouse button or press the Space Bar to display the answers. Find the geometric mean between each.
8.1 The Pythagorean Theorem and Its Converse We will learn to use the Pythagorean Theorem and its converse.
Lesson 7-2: Pythagorean Theorem. Pythagorean Theorem In a ________ ________, the sum of the squares of the ______ of a right triangle will equal the square.
Applying Special Right Triangles
Pythagorean Theorem Theorem 8-1: Pythagorean Theorem – In a right triangle, the sum of the squares of the lengths of the legs is equal to the square of.
3/11-3/ The Pythagorean Theorem. Learning Target I can use the Pythagorean Theorem to find missing sides of right triangles.
9.3 The Converse of the Pythagorean Theorem
Classify each triangle by its angle measures Simplify 4. If a = 6, b = 7, and c = 12, find a 2 + b 2 and find c 2. Which value is greater?
7.1 Apply the Pythagorean Theorem.  Use the Pythagorean Theorem  Recognize Pythagorean Triples.
Objectives Use the Pythagorean Theorem and its converse to solve problems. Use Pythagorean inequalities to classify triangles.
8-8 The Pythagorean Theorem Course 2 Warm Up Warm Up Problem of the Day Problem of the Day Lesson Presentation Lesson Presentation.
Lesson 5-7 Use the Pythagorean Thm 1 Identify the Pythagorean triples 2 Use the Pythagorean inequalities to classify ∆s 3.
Holt Geometry 5-7 The Pythagorean Theorem Warm Up Classify each triangle by its angle measures Simplify 4. If a = 6, b = 7, and c = 12, find.
8.1 Pythagorean Theorem Understand how to use the Pythagorean Theorem and its converse to solve problems Do Now: 1. An entertainment center is 52 in. wide.
Introduction to Chapter 4: Pythagorean Theorem and Its Converse
Warm Up Classify each triangle by its angle measures. 3. Simplify
Objectives Use the Pythagorean Theorem and its converse to solve problems. Use Pythagorean inequalities to classify triangles.
8.1 Pythagorean Theorem and Its Converse
Find the geometric mean between 9 and 13.
9.3 The Converse of the Pythagorean Theorem
The Pythagorean Theorem is probably the most famous mathematical relationship. In a right triangle, the sum of the squares of the lengths of the legs equals.
7-2 The Pythagorean Theorem
Objectives Use the Pythagorean Theorem and its converse to solve problems. Use Pythagorean inequalities to classify triangles.
Section 7.2 Pythagorean Theorem and its Converse Objective: Students will be able to use the Pythagorean Theorem and its Converse. Warm up Theorem 7-4.
The Pythagorean Theorem
Bellringer Simplify each expression 5 ∙ ∙ 8.
Pythagorean Theorem and Its Converse
Click to edit Master subtitle style
Pythagorean Theorem Objective
9.3 The Converse of the Pythagorean Theorem
Objectives Use the Pythagorean Theorem and its converse to solve problems. Use Pythagorean inequalities to classify triangles.
9-2 Pythagorean Theorem.
The Pythagorean Theorem is probably the most famous mathematical relationship. As you learned in Lesson 1-6, it states that in a right triangle, the sum.
The Pythagorean Theorem
The Pythagorean Theorem
8-2 The Pythagorean Theorem and Its Converse
8.1 Pythagorean Theorem and Its Converse
The Pythagorean Theorem
Class Greeting.
7-1 and 7-2: Apply the Pythagorean Theorem
8.1 Pythagorean Theorem and Its Converse
The Pythagorean Theorem
The Pythagorean Theorem
Legs Hypotenuse Pythagorean Triples
The Pythagorean Theorem
The Pythagorean Theorem and Its Converse
Objective: To use the Pythagorean Theorem and its converse.
7-2 PYTHAGOREAN THEOREM AND ITS CONVERSE
Presentation transcript:

The Pythagorean Theorem 5-7 The Pythagorean Theorem Warm Up Lesson Presentation Lesson Quiz Holt Geometry

Warm Up Classify each triangle by its angle measures. 1. 2. 3. Simplify 4. If a = 6, b = 7, and c = 12, find a2 + b2 and find c2. Which value is greater? acute right 12 85; 144; c2

Learning Targets Use the Pythagorean Theorem and its converse to solve problems. Use Pythagorean inequalities to classify triangles.

Vocabulary Pythagorean triple

The Pythagorean Theorem is probably the most famous mathematical relationship. As you learned in Lesson 1-6, it states that in a right triangle, the sum of the squares of the lengths of the legs equals the square of the length of the hypotenuse. a2 + b2 = c2

Example 1A: Using the Pythagorean Theorem Find the value of x. Give your answer in simplest radical form. a2 + b2 = c2 Pythagorean Theorem 22 + 62 = x2 Substitute 2 for a, 6 for b, and x for c. 40 = x2 Simplify. Find the positive square root. Simplify the radical.

Example 1B: Using the Pythagorean Theorem Find the value of x. Give your answer in simplest radical form. a2 + b2 = c2 Pythagorean Theorem (x – 2)2 + 42 = x2 Substitute x – 2 for a, 4 for b, and x for c. x2 – 4x + 4 + 16 = x2 Multiply. –4x + 20 = 0 Combine like terms. 20 = 4x Add 4x to both sides. 5 = x Divide both sides by 4.

Check It Out! Example 1a Find the value of x. Give your answer in simplest radical form. a2 + b2 = c2 Pythagorean Theorem 42 + 82 = x2 Substitute 4 for a, 8 for b, and x for c. 80 = x2 Simplify. Find the positive square root. Simplify the radical.

Example 2: Crafts Application Randy is building a rectangular picture frame. He wants the ratio of the length to the width to be 3:1 and the diagonal to be 12 centimeters. How wide should the frame be? Round to the nearest tenth of a centimeter. Let l and w be the length and width in centimeters of the picture. Then l:w = 3:1, so l = 3w.

Example 2 Continued Pythagorean Theorem a2 + b2 = c2 Substitute 3w for a, w for b, and 12 for c. (3w)2 + w2 = 122 Multiply and combine like terms. 10w2 = 144 Divide both sides by 10. Find the positive square root and round.

A set of three nonzero whole numbers a, b, and c such that a2 + b2 = c2 is called a Pythagorean triple.

Example 3A: Identifying Pythagorean Triples Find the missing side length. Tell if the side lengths form a Pythagorean triple. Explain. a2 + b2 = c2 Pythagorean Theorem 142 + 482 = c2 Substitute 14 for a and 48 for b. 2500 = c2 Multiply and add. 50 = c Find the positive square root. The side lengths are nonzero whole numbers that satisfy the equation a2 + b2 = c2, so they form a Pythagorean triple.

Example 3B: Identifying Pythagorean Triples Find the missing side length. Tell if the side lengths form a Pythagorean triple. Explain. a2 + b2 = c2 Pythagorean Theorem 42 + b2 = 122 Substitute 4 for a and 12 for c. b2 = 128 Multiply and subtract 16 from both sides. Find the positive square root. The side lengths do not form a Pythagorean triple because is not a whole number.

Check It Out! Example 3b Find the missing side length. Tell if the side lengths form a Pythagorean triple. Explain. a2 + b2 = c2 Pythagorean Theorem 242 + b2 = 262 Substitute 24 for a and 26 for c. b2 = 100 Multiply and subtract. b = 10 Find the positive square root. The side lengths are nonzero whole numbers that satisfy the equation a2 + b2 = c2, so they form a Pythagorean triple.

The converse of the Pythagorean Theorem gives you a way to tell if a triangle is a right triangle when you know the side lengths.

You can also use side lengths to classify a triangle as acute or obtuse.

To understand why the Pythagorean inequalities are true, consider ∆ABC.

By the Triangle Inequality Theorem, the sum of any two side lengths of a triangle is greater than the third side length. Remember!

Example 4A: Classifying Triangles Tell if the measures can be the side lengths of a triangle. If so, classify the triangle as acute, obtuse, or right. 5, 7, 10 Step 1 Determine if the measures form a triangle. By the Triangle Inequality Theorem, 5, 7, and 10 can be the side lengths of a triangle.

Step 2 Classify the triangle. Example 4A Continued Step 2 Classify the triangle. c2 = a2 + b2 ? Compare c2 to a2 + b2. 102 = 52 + 72 ? Substitute the longest side for c. 100 = 25 + 49 ? Multiply. 100 > 74 Add and compare. Since c2 > a2 + b2, the triangle is obtuse.

Check It Out! Example 4a Tell if the measures can be the side lengths of a triangle. If so, classify the triangle as acute, obtuse, or right. 7, 12, 16 Step 1 Determine if the measures form a triangle. By the Triangle Inequality Theorem, 7, 12, and 16 can be the side lengths of a triangle.

Check It Out! Example 4a Continued Step 2 Classify the triangle. c2 = a2 + b2 ? Compare c2 to a2 + b2. 162 = 122 + 72 ? Substitute the longest side for c. 256 = 144 + 49 ? Multiply. 256 > 193 Add and compare. Since c2 > a2 + b2, the triangle is obtuse.

Check It Out! Example 4b Tell if the measures can be the side lengths of a triangle. If so, classify the triangle as acute, obtuse, or right. 11, 18, 34 Step 1 Determine if the measures form a triangle. Since 11 + 18 = 29 and 29 > 34, these cannot be the sides of a triangle.

Lesson Quiz: Part I 1. Find the value of x. 2. An entertainment center is 52 in. wide and 40 in. high. Will a TV with a 60 in. diagonal fit in it? Explain. 12

Lesson Quiz: Part II 3. Find the missing side length. Tell if the side lengths form a Pythagorean triple. Explain. 4. Tell if the measures 7, 11, and 15 can be the side lengths of a triangle. If so, classify the triangle as acute, obtuse, or right. 13; yes; the side lengths are nonzero whole numbers that satisfy Pythagorean’s Theorem. yes; obtuse