Lecture 2 Temperature anisotropies cont: what we can learn CMB polarisation: what it is and what we can learn.

Slides:



Advertisements
Similar presentations
Primordial perturbations and precision cosmology from the Cosmic Microwave Background Antony Lewis CITA, University of Toronto
Advertisements

CMB Constraints on Cosmology Antony Lewis Institute of Astronomy, Cambridge
Chapter 18: Cosmology For a humorous approach to quarks, check out the Jefferson Lab’s game.  In Looking for the Top Quark, each player receives six quarks.
© Gary Larson – The Far Side The Cosmic Microwave Background (CMB)
Planck 2013 results, implications for cosmology
Parameterizing the Age of the Universe The Age of Things: Sticks, Stones and the Universe
If the universe were perfectly uniform, then how come the microwave background isn’t uniform? Where did all the structure(galaxies, clusters, etc.) come.
Temporal enhancement of super-horizon scale curvature perturbations from decays of two curvatons and its cosmological implications. Teruaki Suyama (Research.
CMB?. 1. Espectro de la RCF 2. Anisotropías de la RCF.
Cosmological Structure Formation A Short Course
Distinguishing Primordial B Modes from Lensing Section 5: F. Finelli, A. Lewis, M. Bucher, A. Balbi, V. Aquaviva, J. Diego, F. Stivoli Abstract:” If the.
WMAP. The Wilkinson Microwave Anisotropy Probe was designed to measure the CMB. –Launched in 2001 –Ended 2010 Microwave antenna includes five frequency.
Galaxies and Cosmology 5 points, vt-2007 Teacher: Göran Östlin Lectures
Lecture 2: Observational constraints on dark energy Shinji Tsujikawa (Tokyo University of Science)
CMB as a physics laboratory
The Structure Formation Cookbook 1. Initial Conditions: A Theory for the Origin of Density Perturbations in the Early Universe Primordial Inflation: initial.
CMB polarisation results from QUIET
Program 1.The standard cosmological model 2.The observed universe 3.Inflation. Neutrinos in cosmology.
Physics 133: Extragalactic Astronomy and Cosmology Lecture 14; March
X What is the shape of our universe? By Sandro Berndt.
CMB acoustic peaks.
Cosmic Microwave Background (CMB) Peter Holrick and Roman Werpachowski.
PHY306 1 Modern cosmology 4: The cosmic microwave background Expectations Experiments: from COBE to Planck  COBE  ground-based experiments  WMAP  Planck.
Weak Lensing 3 Tom Kitching. Introduction Scope of the lecture Power Spectra of weak lensing Statistics.
Polarization-assisted WMAP-NVSS Cross Correlation Collaborators: K-W Ng(IoP, AS) Ue-Li Pen (CITA) Guo Chin Liu (ASIAA)
Different physical properties contribute to the density and temperature perturbation growth. In addition to the mutual gravity of the dark matter and baryons,
Early times CMB.
Dark energy I : Observational constraints Shinji Tsujikawa (Tokyo University of Science)
Lec 8 What have we learned: [chpt 11.4] –Conditions of gravitational collapse (=growth) –Stable oscillation (no collapse) within sound horizon if pressure-dominated.
Cosmic Microwave Background  Cosmological Overview/Definitions  Temperature  Polarization  Ramifications  Cosmological Overview/Definitions  Temperature.
The Cosmic Microwave Background Lecture 2 Elena Pierpaoli.
CMB observations and results Dmitry Pogosyan University of Alberta Lake Louise, February, 2003 Lecture 1: What can Cosmic Microwave Background tell us.
Probing fundamental physics with CMB B-modes Cora Dvorkin IAS Harvard (Hubble fellow) Status and Future of Inflationary Theory workshop August 2014, KICP.
Constraints on Dark Energy from CMB Eiichiro Komatsu University of Texas at Austin Dark Energy February 27, 2006.
How can CMB help constraining dark energy? Licia Verde ICREA & Institute of space Sciences (ICE CSIC-IEEC)
Lecture 5: Matter Dominated Universe: CMB Anisotropies and Large Scale Structure Today, matter is assembled into structures: filaments, clusters, galaxies,
The Birth of the Universe. Hubble Expansion and the Big Bang The fact that more distant galaxies are moving away from us more rapidly indicates that the.
MAPping the Universe ►Introduction: the birth of a new cosmology ►The cosmic microwave background ►Measuring the CMB ►Results from WMAP ►The future of.
Our Evolving Universe1 Vital Statistics of the Universe Today… l l Observational evidence for the Big Bang l l Vital statistics of the Universe   Hubble’s.
FRW-models, summary. Properties of the Universe set by 3 parameters:  m,  ,  k of Which only 2 are Independent:  m +   +  k = 1.
The Origin and Nature of Light. Honors Project Deadlines Sorry about the confusion!! Project Proposal Deadline: Thursday March 1 st 2007 Project Submission.
How the Universe got its Spots Edmund Bertschinger MIT Department of Physics.
the National Radio Astronomy Observatory – Socorro, NM
Cosmic Microwave Background Carlo Baccigalupi, SISSA CMB lectures at TRR33, see the complete program at darkuniverse.uni-hd.de/view/Main/WinterSchoolLecture5.
BBN: Constraints from CMB experiments Joanna Dunkley University of Oxford IAUS Geneva, Nov
Reionisation and the cross-correlation between the CMB and the 21-cm line fluctuations Hiroyuki Tashiro IAS, ORSAY 43rd Rencontres de Moriond La Thuile,
The Beginning of Time: Evidence for the Big Bang & the Theory of Inflation.
IAAA Inha Amateur Astronomical Association Cosmology 인하대학교 별지기 4 기 연세대학교 천문우주학과 김명진 2006 년 2 학기 별지기 세미나
3rd International Workshop on Dark Matter, Dark Energy and Matter-Antimatter Asymmetry NTHU & NTU, Dec 27—31, 2012 Likelihood of the Matter Power Spectrum.
Astro-2: History of the Universe Lecture 10; May
Cosmology and Dark Matter III: The Formation of Galaxies Jerry Sellwood.
The Cosmic Microwave Background
Basics of the Cosmic Microwave Background Eiichiro Komatsu (UT Austin) Lecture at Max Planck Institute August 14, 2007.
Lecture 27: The Shape of Space Astronomy Spring 2014.
ASTR 113 – 003 Spring 2006 Lecture 12 April 19, 2006 Review (Ch4-5): the Foundation Galaxy (Ch 25-27) Cosmology (Ch28-29) Introduction To Modern Astronomy.
IAAA Inha Amateur Astronomical Association Cosmology 인하대학교 별지기 4 기 연세대학교 천문우주학과 김명진 전국 대학생 아마추어 천문회 서울지부 세미나
BICEP2 Results & Its Implication on inflation models and Cosmology Seokcheon Lee 48 th Workshop on Gravitation & NR May. 16 th
Discovering the Universe Eighth Edition Discovering the Universe Eighth Edition Neil F. Comins William J. Kaufmann III CHAPTER 18 Cosmology Cosmology.
The cross-correlation between CMB and 21-cm fluctuations during the epoch of reionization Hiroyuki Tashiro N. Aghanim (IAS, Paris-sud Univ.) M. Langer.
Understanding the CMB Neutrino Isocurvature modes S. MUYA KASANDA School of Mathematical Sciences University of KwaZulu-Natal Supervisor: Dr K. Moodley.
Particle Astrophysics & Cosmology SS Chapter 6 Cosmic Microwave Background.
Smoke This! The CMB, the Big Bang, Inflation, and WMAP's latest results Spergel et al, 2006, Wilkinson Microwave Anisotropy Probe (WMAP) Three Year results:
Annihilation (with symmetry breaking) quark soup
Cosmology.
Standard ΛCDM Model Parameters
Shintaro Nakamura (Tokyo University of Science)
Lecture 5: Matter Dominated Universe
CMB Anisotropy 이준호 류주영 박시헌.
Electron Acoustic Waves (EAW) EAW’s are novel kinetic waves that exist only because nonlinear trapping turns off Landau damping. We recently provided.
6-band Survey: ugrizy 320–1050 nm
Presentation transcript:

Lecture 2 Temperature anisotropies cont: what we can learn CMB polarisation: what it is and what we can learn

Announcements Slides from lecture 1 now online (ppt and pdf), slides from this lecture available from tomorrow Deadline for assessment is Thursday 18th March 5pm Full instructions and suggestions, plus the paper for lecture 5 workshop will be circulated by tomorrow

Key point from Lecture 1: CMB map to Power Spectrum Amplitude of fluctuations as function of angular scale Wiggly line is a function of the cosmological parameters

What can we learn? Observe CMB over a wide range of scales, measure: Compute in sensible bins Use eg CMBFAST to generate theoretical power spectrum with parameter values –H 0, M, b,, k, z re, t 0 ….etc Does it fit? Tweak parameters, try again

Parameter dependance Positions and relative heights of the various peaks depend on parameter values All inter-dependant and complicated Well focus on three interesting points: –Position of the first peak –Ratio on 2nd/1st peaks –Height of the third peak

First peak Position of first peak gives the curvature of the Universe In fact, other peaks are fixed to the first peak so this governs x-position of power spectrum

First peak position: curvature Decrease curvature, peaks shift right to smaller scales If the Universe is not flat, it affects the apparent size of the anisotropies Observations show Universe is almost perfectly flat

2nd/1st peak heights Collapse driven by gravity: dark matter plus baryons (balls) Rarefaction driven by photons (springs): coupled to baryons only 2nd peak: comes from 1 compression and 1 rarefaction Expect lower than 1st peak. –More baryons, difference is greater In fact, expect all even peaks to be suppressed relative to odd peaks

2nd/1st peak heights Increase Baryon density: Odd/even peak height ratio increases Also: –Baryons slow oscillations down: spectrum shifts to higher –Baryons increase the damping at high

Third peak Sensitive to ratio of dark matter to radiation –We know the radiation density from the physics of the early Universe, so really the only variable is the amount of dark matter Smaller modes started oscillating earlier when the Universe was radiation dominated Part of the gravitational potential came from the radiation itself Mode at maximum compression, density stabilised, potential could dissipate, no longer resisted expansion Expect high third peak and beyond (as oscillations started during radiation domination) BUT more dark matter will reduce this (plus silk damping)

Third peak Expect enhancement of higher peaks due to radiation driving However, increase dark matter…. Note growth of third peak with increasing matter density All peak heights decrease (less radiation driving)

Higher peaks / damping tail Give consistency checks Picture is actually complicated, effects all inter- related Take home points: –1st peak: tells us the curvature of the Universe –2nd peak: height relative to 1st peak gives the baryon density –3rd peak: height relative to 2nd peak gives the dark matter density –Thus we naturally have total matter density (baryons plus dark matter), and as we know the Universe is flat, we can also constrain dark energy

Summary Expts: Pre-WMAP

CMB Polarisation The CMB is partially polarised Two chances to polarise the CMB: –DURING recombination (short time, low level signal) –AFTER stars have reionised the Universe (ie a non- primordial signal, still interesting for cosmology) Signal 10 times smaller than CMB temperature anisotropies (or less!) WHY BOTHER?? –Constrain the redshift of reionisation, ie the time at which stars turned on (E-modes) –Detect primordial gravity waves and thus confirm the theory of inflation (B-modes)

Polarisation mechanism Simple case: light reflected off a surface Incoming radiation shakes electrons on surface, this re- radiates the incident light Electrons move most easily in the plane of the surface Radiation polarised parallel to the plane of the suface Analogy with CMB: photons reflected by electrons via Thomson scattering

Polarisation: Thomson scattering Blue lines: E-field Incoming light shakes electron as shown Radiation scattered at 90° Light can not be polarised in direction of travel One linear polarisation state is scattered

Polarisation: Thomson scattering Consider isotropic radiation Incoming radiation from left and top have same intensity Each is polarised as before Outgoing radiation has no net polarisation Need anisotropy to see a net polarisation

Polarisation: Thomson scattering Quadropole anisotropy Put simply: the two radiation sources, at 90° from each other, are at different temperatures Still get both polarisation states but one is stronger than the other

Polarisation modes E-mode, or electric mode –No curl B-mode, or magnetic mode –Has curl

In practice: detect both modes Simulated dataPure E-modePure B-mode Decompose

Polarisation modes E-modes are produced by: –CMB primordial temperature anisotropies: ie we can place further constraints on the cosmological parameters already constrained by temperature anisotropies –Scattering after reionisation (discussed next) –Foregrounds (galaxy, instrumental) B-modes are produced by: –Gravity waves during inflation (discussed next) –Lensing of E-modes by large scale structure –Foregrounds

Aside: Reionisation Post recombination, Universe was neutral…..until stars formed and produced ionising radiation Charged particles (ions) can Thomson scatter CMB photons, although the probability is very low (~1%) This produces E-mode polarisation on the largest scales

Aside: Gravity waves Inflation, explosive expansion made ripples in space-time Gravity waves: give B-mode polarisation in the CMB Amplitude depends on expansion rate during inflation

Aside: Cosmic shear Two types of gravitational lensing: weak and strong Strong: see arcs, multiple images Weak: analyse shear field Cosmic shear: cumulative weak lensing Lensing of E-mode CMB gives fake B-modes

Power spectra Temperature (as before) Correlation: T with E E-mode ( times Fainter than T) B-mode (fainter still) Interesting info is on the larger scales

E-mode detection DASI - the first! 2002 Level consistent with Prediction from T anisotropy WMAP1: Confirmation Redshift of reionisation EARLY (when stars turned on) TE correlation

E-mode detection DASI - the first! Level consistent with Prediction from T anisotropy WMAP3: TE correlation LATER RETRACTED!! TE correlation

E-mode detection y=0

Effect of E-modes on P.S. Determine redshift of reionsation (birth of the first stars)

B-modes….. Primordial B-modes are produced by gravity waves (during inflation) ISSUE: E-modes (as discussed previously) turn into B-modes via gravitational lensing –The CMB may be lensed by large scale structure on its journey towards us Also: most primordial signal (the interesting bit) is on largest scales where galactic contamination is strongest

B-modes….. Galatic contamination on large scales

Effect of B-modes on P.S. Detect B-modes? Gravity waves. Prove inflation. If youre sure its primordial signal!

Summary: What the CMB can tell us CMB temperature anisotropies: –1st peak position: curvature –2nd to 1st peak heights: baryon density –3rd peak height: density of dark matter CMB polarisation: –E-modes: cosmological parameters (as above), redshift of reionisation –B-modes: gravity waves (would prove inflation)