Library of Functions You should be familiar with the shapes of these basic functions. We'll learn them in this section.

Slides:



Advertisements
Similar presentations
Equations in Quadratic Form
Advertisements

Symmetric about the y axis
< < < > > >         . There are two kinds of notation for graphs of inequalities: open circle or filled in circle notation and interval notation.
Operations on Functions
Solving Quadratic Equations.
Parallel and Perpendicular Lines. Gradient-Intercept Form Useful for graphing since m is the gradient and b is the y- intercept Point-Gradient Form Use.
LINES. gradient The gradient or gradient of a line is a number that tells us how “steep” the line is and which direction it goes. If you move along the.
If a > 0 the parabola opens up and the larger the a value the “narrower” the graph and the smaller the a value the “wider” the graph. If a < 0 the parabola.
PAR TIAL FRAC TION + DECOMPOSITION. Let’s add the two fractions below. We need a common denominator: In this section we are going to learn how to take.
Let's find the distance between two points. So the distance from (-6,4) to (1,4) is 7. If the.
DOUBLE-ANGLE AND HALF-ANGLE FORMULAS
(r,  ). You are familiar with plotting with a rectangular coordinate system. We are going to look at a new coordinate system called the polar coordinate.
SPECIAL USING TRIANGLES Computing the Values of Trig Functions of Acute Angles.
SOLVING LINEAR EQUATIONS. If we have a linear equation we can “manipulate” it to get it in this form. We just need to make sure that whatever we do preserves.
TRIGONOMETRIC IDENTITIES
You walk directly east from your house one block. How far from your house are you? 1 block You walk directly west from your house one block. How far from.
Logarithmic Functions. y = log a x if and only if x = a y The logarithmic function to the base a, where a > 0 and a  1 is defined: exponential form logarithmic.
INVERSE FUNCTIONS.
The definition of the product of two vectors is: 1 This is called the dot product. Notice the answer is just a number NOT a vector.
Dividing Polynomials.
exponential functions
GEOMETRIC SEQUENCES These are sequences where the ratio of successive terms of a sequence is always the same number. This number is called the common ratio.
VECTORS. A vector is a quantity that has both magnitude and direction. It is represented by an arrow. The length of the vector represents the magnitude.
The standard form of the equation of a circle with its center at the origin is Notice that both the x and y terms are squared. Linear equations don’t.
When trying to figure out the graphs of polar equations we can convert them to rectangular equations particularly if we recognize the graph in rectangular.
Library of Functions You should be familiar with the shapes of these basic functions. We'll learn them in this section.
LINEAR Linear programming techniques are used to solve a wide variety of problems, such as optimising airline scheduling and establishing telephone lines.
Properties of Logarithms
5/16/14 OBJ: SWBAT graph and recognize exponential functions. Bell Ringer: Start notes for Exponential functions Homework Requests: pg 246 #1-29 odds.
Logarithmic and Exponential Equations. Steps for Solving a Logarithmic Equation If the log is in more than one term, use log properties to condense Re-write.
A polynomial function is a function of the form: All of these coefficients are real numbers n must be a positive integer Remember integers are … –2, -1,
Functions and Graphs 1.2. FUNCTIONSFUNCTIONS Symmetric about the y axis Symmetric about the origin.
SEQUENCES A sequence is a function whose domain in the set of positive integers. So if I gave you a function but limited the domain to the set of positive.
11.3 Powers of Complex Numbers, DeMoivre's Theorem Objective To use De Moivre’s theorem to find powers of complex numbers.
COMPLEX Z R O S. Complex zeros or roots of a polynomial could result from one of two types of factors: Type 1 Type 2 Notice that with either type, the.
Library of Functions You should be familiar with the shapes of these basic functions. We'll learn them in this section.
Sum and Difference Formulas. Often you will have the cosine of the sum or difference of two angles. We are going to use formulas for this to express in.
Solving Quadratics and Exact Values. Solving Quadratic Equations by Factoring Let's solve the equation First you need to get it in what we call "quadratic.
Surd or Radical Equations. To solve an equation with a surd First isolate the surd This means to get any terms not under the square root on the other.
COMPOSITION OF FUNCTIONS “SUBSTITUTING ONE FUNCTION INTO ANOTHER”
VECTORS. A vector is a quantity that has both magnitude and direction. It is represented by an arrow. The length of the vector represents the magnitude.
Warm Up! Complete the square Quadratic Functions and Models.
Remainder and Factor Theorems. REMAINDER THEOREM Let f be a polynomial function. If f (x) is divided by x – c, then the remainder is f (c). Let’s look.
Dividing Polynomials Using Synthetic Division. List all coefficients (numbers in front of x's) and the constant along the top. If a term is missing, put.
INTRODUCING PROBABILITY. This is denoted with an S and is a set whose elements are all the possibilities that can occur A probability model has two components:
The sum f + g This just says that to find the sum of two functions, add them together. You should simplify by finding like terms. Combine like terms &
Let's just run through the basics. x axis y axis origin Quadrant I where both x and y are positive Quadrant II where x is negative and y is positive Quadrant.
We’ve already graphed equations. We can graph functions in the same way. The thing to remember is that on the graph the f(x) or function value is the.
PARAMETRIC Q U A T I 0 N S. The variable t (the parameter) often represents time. We can picture this like a particle moving along and we know its x position.
The sum f + g This just says that to find the sum of two functions, add them together. You should simplify by finding like terms. Combine like terms &
(r,  ). You are familiar with plotting with a rectangular coordinate system. We are going to look at a new coordinate system called the polar coordinate.
10-7 (r, ).
Systems of Inequalities.
RATIONAL FUNCTIONS II GRAPHING RATIONAL FUNCTIONS.
THE DOT PRODUCT.
Relations And Functions.
(r, ).
Graphing Techniques: Transformations Transformations Transformations
INVERSE FUNCTIONS.
Relations And Functions.
SIMPLE AND COMPOUND INTEREST
INVERSE FUNCTIONS Chapter 1.5 page 120.
Relations And Functions.
INVERSE FUNCTIONS.
Graphing Techniques: Transformations Transformations: Review
Symmetric about the y axis
exponential functions
Relations And Functions.
Symmetric about the y axis
Graphing Techniques: Transformations Transformations: Review
Presentation transcript:

Library of Functions You should be familiar with the shapes of these basic functions. We'll learn them in this section.

Odd and Even Functions A function f is even if f(  x) = f(x) for all x in its domain. A function f is odd if f(  x) =  f(x) for all x in its domain. Vertical line of reflection at x = 0 Point of rotational symmetry

Linear Functions Equations that can be written f(x) = mx + b The domain of these functions is all real numbers. slope y-intercept

Constant Functions f(x) = b, where b is a real number The domain of these functions is all real numbers. The range will only be b f(x) = 3f(x) = -1f(x) = 1 Would constant functions be even or odd or neither?

Identity Function f(x) = x, slope 1, y-intercept = 0 The domain of this function is all real numbers. The range is also all real numbers f(x) = x Would the identity function be even or odd or neither? If you put any real number in this function, you get the same real number “back”.

Square Function f(x) = x 2 The domain of this function is all real numbers. The range is Would the square function be even or odd or neither?

Cubic Function f(x) = x 3 The domain of this function is all real numbers. The range is all real numbers Would the cube function be even or odd or neither?

Square Root Function The domain of this function is The range is Would the square root function be even or odd or neither?

Reciprocal Function The domain of this function is all NON-ZERO real numbers. The range is Would the reciprocal function be even or odd or neither?

Absolute Value Function The domain of this function is all real numbers. The range is Would the absolute value function be even or odd or neither?

WISE FUNCTIONS These are functions that are defined differently on different parts of the domain.

This means for x’s less than 0, put them in f(x) = -x but for x’s greater than or equal to 0, put them in f(x) = x 2 What does the graph of f(x) = -x look like? Remember y = f(x) so let’s graph y = - x which is a line of slope –1 and y-intercept 0. Since we are only supposed to graph this for x< 0, we’ll stop the graph at x = 0. What does the graph of f(x) = x 2 look like? Since we are only supposed to graph this for x  0, we’ll only keep the right half of the graph. Remember y = f(x) so lets graph y = x 2 which is a square function (parabola) This then is the graph for the piecewise function given above.

For x values between –3 and 0 graph the line y = 2x + 5. Since you know the graph is a piece of a line, you can just plug in each end value to get the endpoints. f(-3) = -1 and f(0) = 5 For x = 0 the function value is supposed to be –3 so plot the point (0, -3) For x > 0 the function is supposed to be along the line y = - 5x. Since you know this graph is a piece of a line, you can just plug in 0 to see where to start the line and then count a – 5 slope. So this the graph of the piecewise function solid dot for "or equal to" open dot since not "or equal to"

Acknowledgement I wish to thank Shawna Haider from Salt Lake Community College, Utah USA for her hard work in creating this PowerPoint. Shawna has kindly given permission for this resource to be downloaded from and for it to be modified to suit the Western Australian Mathematics Curriculum. Stephen Corcoran Head of Mathematics St Stephen’s School – Carramar