2-1: Inductive Reasoning

Slides:



Advertisements
Similar presentations
Sec 2-1 Concept: Use Inductive Reasoning Objectives: Given a pattern, describe it through inductive reasoning.
Advertisements

Geometry Section 1.1 Patterns and Inductive Reasoning
Notes 1.1.
TODAY IN GEOMETRY…  Warm up: Review concepts covered on Ch. 1 test  STATs for Ch.1 test  Learning Goal: 2.1 You will use patterns and describe inductive.
Inductive Reasoning.  Reasoning based on patterns that you observe  Finding the next term in a sequence is a form of inductive reasoning.
Inductive and Deductive Reasoning Geometry 1.0 – Students demonstrate understanding by identifying and giving examples of inductive and deductive reasoning.
Warm-up August 22, 2011 Evaluate the following expressions.
Geometry Vocabulary 1A Geometry, like much of mathematics and science, developed when people began recognizing and describing patterns. In this course,
Honors Geometry Section 1.0 Patterns and Inductive Reasoning
Patterns and Inductive Reasoning
Section 1.1 Inductive Reasoning 1/16. DEDUCTIVE REASONING Two Types of Reasoning INDUCTIVE REASONING 2/16.
Chapter 1-4: Properties Commutative Property: the order in which you add or multiply numbers does not change the sum or product Ex = * 8.
GEOMETRY – P7. HONORS GEOMETRY – P4 Bellwork – PSAT Question (C) 30.
Geometry Notes 1.1 Patterns and Inductive Reasoning
Inductive/Dedu ctive Reasoning Using reasoning in math and science.
Properties and Numbers 1.4. Deductive Reasoning Using facts, properties or rules to reach a valid conclusion Conjecture: statement that could be true.
2.2 Inductive and Deductive Reasoning. What We Will Learn Use inductive reasoning Use deductive reasoning.
MATH 104 Chapter 1 Reasoning.
Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Use inductive reasoning to identify patterns and make conjectures. Find counterexamples.
2.1 Use Inductive Reasoning Describe patterns and use inductive reasoning skills.
Patterns & Inductive Reasoning
1 1-1 Patterns and Inductive Reasoning Objectives: Define: –Conjectures –Inductive reasoning –Counterexamples Make conjectures based on inductive reasoning.
Mrs. McConaughyGeometry1 Patterns and Inductive Reasoning During this lesson, you will use inductive reasoning to make conjectures.
Review and 1.1 Patterns and Inductive Reasoning
1.2 Patterns and Inductive Reasoning. Ex. 1: Describing a Visual Pattern Sketch the next figure in the pattern
1.2 Inductive Reasoning. Inductive Reasoning If you were to see dark, towering clouds approaching what would you do? Why?
Patterns, Inductive Reasoning & Conjecture. Inductive Reasoning Inductive reasoning is reasoning that is based on patterns you observe.
1.1 Patterns and Inductive Reasoning
1.1 – PATTERNS AND INDUCTIVE REASONING Chapter 1: Basics of Geometry.
Chapter Using inductive reasoning to make conjectures.
Unit 01 – Lesson 08 – Inductive Reasoning Essential Question  How can you use reasoning to solve problems? Scholars will  Make conjectures based on inductive.
EXAMPLE 1 Describe a visual pattern Describe how to sketch the fourth figure in the pattern. Then sketch the fourth figure. SOLUTION Each circle is divided.
2.1 Use Inductive Reasoning
Review Examples. 1.1 Patterns and Inductive Reasoning “Our character is basically a composite of our habits. Because they are consistent, often.
Lesson 1.2 Inductive Reasoning Pages Observe Look for patterns Develop a hypothesis (or conjecture) Test your hypothesis.
Megan FrantzOkemos High School Math Instructor.  Use inductive reasoning to identify patterns and make conjectures.  Determine if a conjecture is true.
1 LESSON 1.1 PATTERNS AND INDUCTIVE REASONING. 2 Objectives To find and describe patterns. To use inductive reasoning to make conjectures.
2.1 Inductive Reasoning and Conjecture. Objectives Make conjectures based on inductive reasoning Find counterexamples Describing Patterns: Visual patterns.
2.1 Using Inductive Reasoning to Make Conjectures.
Using Inductive Reasoning to Make Conjectures Geometry Farris 2015.
Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures 2-1 Using Inductive Reasoning to Make Conjectures Holt Geometry Warm Up Warm Up.
Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Toolbox Pg. 77 (11-15; 17-22; 24-27; 38 why 4 )
CHAPTER 1 SECTION 2. MAKING A CONJECTURE: A conjecture is an unproven statement that is based on a pattern or observation. Much of the reasoning in geometry.
Section 2.1: Use Inductive Reasoning Conjecture: A conjecture is an unproven statement that is based on observations; an educated guess. Inductive Reasoning:
1.0.25, 1, 1 2.0, 3, 8 3.1, 3/2, 2 4.  1/2,  2,  3 1 Warm Up.
Warm Up 1.) Adds one more side to the polygon. 2.)
2.1 Inductive Reasoning.
3 – 6 Inductive Reasoning.
2.1 – Use Inductive Reasoning
Inductive & Deductive Reasoning Postulates & Diagrams
Five step procedure for drawing conclusions.
Patterns and Inductive Reasoning
Chapter 2: Reasoning in Geometry
2.1-2 Inductive Reasoning and Conditional Statements
1.1 Patterns and Inductive Reasoning
Drill 1, 3, 5, 7, 9, __, __ 2, 5, 8, 11, 14, __, __ -3, -6, -10, -15, __ , , , __ OBJ: SWBAT use inductive reasoning in order to identify.
2.1 Inductive Reasoning Objectives:
2.2 Patterns & Inductive Reasoning
PATTERNS AND INDUCTIVE REASONING
2.1 Inductive Reasoning and Conjecturing
Patterns & Inductive Reasoning
Patterns and Inductive Reasoning
Patterns and Inductive Reasoning
Patterns and Inductive Reasoning
2-1: Use Inductive reasoning
2.1 Use Inductive Reasoning
2-1 Use Inductive Reasoning
Lesson 2.1 Use Inductive Reasoning
2-1 Inductive Reasoning and Conjecture
4.2 Using Inductive Reasoning
Presentation transcript:

2-1: Inductive Reasoning Mr. Schaab’s Geometry Class Our Lady of Providence Jr.-Sr. High School 2015-2016

Inductive Reasoning Defined Inductive Reasoning – Using patterns you observe to make an educated guess about what will happen next. Example: The last four A-days your friend who sits next to you in 1st block has asked you to for a pencil but you always have only one. What might you do on the fifth day? Bring two pencils to class on A-Days, sit somewhere else, make a new friend… Example: Every year starting with your 6th birthday, you mark your height on a wall. The first 5 marks are 42”, 45”, 48”, 51”, and on your 10th birthday you are 54”. How tall do you guess you’ll be on your 13th birthday? 63”

Inductive Reasoning - Examples

What is a Conjecture? Conjecture: An unproven, but seemingly valid general statement based on specific observations. Must always be true. Ex: (-2) (-4) (-3) = Ex: (-1) (-9) (-7) = Conjecture: The product of 3 negative integers is___________________________________ -24 -63 A negative integer

Making Conjectures

Making Conjectures 20 12 24 16 Examples: The sum of two odd numbers is always an even number. The sum of two odd numbers is divisible by four?

Counterexamples Counterexample – one single case that disproves a conjecture. Example: Conjecture: The sum of two odd numbers is a multiple of 4. Counterexample: 1 + 5 = 6, and 6 is not a multiple of 4. Conjecture: Multiplying a number by 2 makes the number bigger. Counterexample: 2(-10) = -20, and -20 < -10

Counterexamples Provide a counterexample to the conjecture: The value of x2 is always greater than the value of x. Possible Counterexamples: 1, 0, ½, ¾ The math teachers at PHS all have a double letter in their last name. Possible Counterexamples: Mrs. Mauk, Dr. Yankey