Global Optimization Techniques in Computational Electromagnetics Zbyněk Raida Dept. of Radio Electronics Brno University of Technology Brno, Czechia.

Slides:



Advertisements
Similar presentations
MATLAB: toolboxes, technical calculations. Numeric integration (1) Evaluating integral: computing a surface below a curve.
Advertisements

Chapter 13 Transmission Lines
Optimization methods Review
Particle Swarm Optimization (PSO)  Kennedy, J., Eberhart, R. C. (1995). Particle swarm optimization. Proc. IEEE International Conference.
ECE 8443 – Pattern Recognition ECE 8423 – Adaptive Signal Processing Objectives: Newton’s Method Application to LMS Recursive Least Squares Exponentially-Weighted.
Particle Swarm Optimization (PSO)
1/44 1. ZAHRA NAGHSH JULY 2009 BEAM-FORMING 2/44 2.
ISSPIT Ajman University of Science & Technology, UAE
Object Recognition Using Genetic Algorithms CS773C Advanced Machine Intelligence Applications Spring 2008: Object Recognition.
Engineering Optimization
A new crossover technique in Genetic Programming Janet Clegg Intelligent Systems Group Electronics Department.
A Comparative Study Of Deterministic And Stochastic Optimization Methods For Integrated Design Of Processes Mario Francisco a, Silvana Revollar b, Pastora.
Advanced Topics in Optimization
UNCONSTRAINED MULTIVARIABLE
Optimization of thermal processes2007/2008 Optimization of thermal processes Maciej Marek Czestochowa University of Technology Institute of Thermal Machinery.
Optimal Arrangement of Ceiling Cameras for Home Service Robots Using Genetic Algorithms Stefanos Nikolaidis*, ** and Tamio Arai** *R&D Division, Square.
Optimization Using Broyden-Update Self-Adjoint Sensitivities Dongying Li, N. K. Nikolova, and M. H. Bakr McMaster University, 1280 Main Street West, Hamilton,
1 PSO-based Motion Fuzzy Controller Design for Mobile Robots Master : Juing-Shian Chiou Student : Yu-Chia Hu( 胡育嘉 ) PPT : 100% 製作 International Journal.
Particle Swarm Optimization Algorithms
Parallel Genetic Algorithms with Distributed-Environment Multiple Population Scheme M.Miki T.Hiroyasu K.Hatanaka Doshisha University,Kyoto,Japan.
A Genetic Algorithms Approach to Feature Subset Selection Problem by Hasan Doğu TAŞKIRAN CS 550 – Machine Learning Workshop Department of Computer Engineering.
Introduction to Adaptive Digital Filters Algorithms
Suriya, A. September 19, 2015, Slide 0 Atipong Suriya School of MIME March 16, 2011 FE 640 : Term Project Presentation RFID Network Planning using Particle.
Integrating Neural Network and Genetic Algorithm to Solve Function Approximation Combined with Optimization Problem Term presentation for CSC7333 Machine.
An Introduction to Genetic Algorithm (GA) By: Dola Pathak For: STAT 992:Computational Statistics SPRING
1 11 Subcarrier Allocation and Bit Loading Algorithms for OFDMA-Based Wireless Networks Gautam Kulkarni, Sachin Adlakha, Mani Srivastava UCLA IEEE Transactions.
Particle Swarm Optimization (PSO) Algorithm and Its Application in Engineering Design Optimization School of Information Technology Indian Institute of.
Inductively Loaded Shorted Patch Antenna With Reduced Size M. S. Ruiz Palacios, M. J. Martinez Silva Universidad de Guadalajara, Jalisco, México Abstract—
Comparison of Differential Evolution and Genetic Algorithm in the Design of a 2MW Permanent Magnet Wind Generator A.D.Lilla, M.A.Khan, P.Barendse Department.
Genetic algorithms Charles Darwin "A man who dares to waste an hour of life has not discovered the value of life"
(Particle Swarm Optimisation)
The Particle Swarm Optimization Algorithm Nebojša Trpković 10 th Dec 2010.
More on Heuristics Genetic Algorithms (GA) Terminology Chromosome –candidate solution - {x 1, x 2,...., x n } Gene –variable - x j Allele –numerical.
Pattern Diversity Compact Patch Antenna M. S. Ruiz Palacios, M. J. Martínez Silva Universidad de Guadalajara, Jalisco, México Abstract— Diversity is a.
Derivative Free Optimization G.Anuradha. Contents Genetic Algorithm Simulated Annealing Random search method Downhill simplex method.
A Parallel Genetic Algorithm with Distributed Environment Scheme
Controlling the Behavior of Swarm Systems Zachary Kurtz CMSC 601, 5/4/
Capacity Enhancement with Relay Station Placement in Wireless Cooperative Networks Bin Lin1, Mehri Mehrjoo, Pin-Han Ho, Liang-Liang Xie and Xuemin (Sherman)
 Based on observed functioning of human brain.  (Artificial Neural Networks (ANN)  Our view of neural networks is very simplistic.  We view a neural.
Biologically inspired algorithms BY: Andy Garrett YE Ziyu.
Particle Swarm Optimization by Dr. Shubhajit Roy Chowdhury Centre for VLSI and Embedded Systems Technology, IIIT Hyderabad.
Multi-Split-Row Threshold Decoding Implementations for LDPC Codes
SwinTop: Optimizing Memory Efficiency of Packet Classification in Network Author: Chen, Chang; Cai, Liangwei; Xiang, Yang; Li, Jun Conference: Communication.
1 Chapter 6 General Strategy for Gradient methods (1) Calculate a search direction (2) Select a step length in that direction to reduce f(x) Steepest Descent.
Optimization in Engineering Design 1 Introduction to Non-Linear Optimization.
Genetic Algorithm Dr. Md. Al-amin Bhuiyan Professor, Dept. of CSE Jahangirnagar University.
1 Comparative Study of two Genetic Algorithms Based Task Allocation Models in Distributed Computing System Oğuzhan TAŞ 2005.
A Presentation on Adaptive Neuro-Fuzzy Inference System using Particle Swarm Optimization and it’s Application By Sumanta Kundu (En.R.No.
Advanced AI – Session 7 Genetic Algorithm By: H.Nematzadeh.
Hirophysics.com The Genetic Algorithm vs. Simulated Annealing Charles Barnes PHY 327.
بِسْمِ اللهِ الرَحْمَنِ الرَحِيم السلام عليكم ورحمة الله وبركاته بِسْمِ اللهِ الرَحْمَنِ الرَحِيم السلام عليكم ورحمة الله وبركاته.
Benjamin Baggett M.S. Thesis Project, Virginia Tech Advisor: Dr. Timothy Pratt Keywords: Genetic algorithm, particle swarm optimization, aperiodic array,
Evolutionary Computation: Advanced Algorithms and Operators
Advanced Computing and Networking Laboratory
The 2st Chinese Workshop on Evolutionary Computation and Learning
Particle Swarm Optimization with Partial Search To Solve TSP
Cluster formation based comparison of Genetic algorithm and Particle Swarm Optimization in Wireless Sensor Network Ms.Amita Yadav.
Adnan Quadri & Dr. Naima Kaabouch Optimization Efficiency
Classification Analytical methods classical methods
Particle Swarm Optimization
PSO -Introduction Proposed by James Kennedy & Russell Eberhart in 1995
Meta-heuristics Introduction - Fabien Tricoire
Traffic Simulator Calibration
Multi-objective Optimization Using Particle Swarm Optimization
Multi-band impedance matching using an evolutionary algorithm
Non-linear Least-Squares
Metaheuristic methods and their applications. Optimization Problems Strategies for Solving NP-hard Optimization Problems What is a Metaheuristic Method?
Multi-Objective Optimization for Finite Element Analysis
Genetic algorithms: case study
Steepest Descent Optimization
Presentation transcript:

Global Optimization Techniques in Computational Electromagnetics Zbyněk Raida Dept. of Radio Electronics Brno University of Technology Brno, Czechia

Outline What does the optimization mean Classification of optimization tasks - single-objective versus multi-objective - local versus global Genetic optimization vs. particle swarm one Local tuning of global solutions An example Global optimization techniques …ITSS 2007, Pforzheim

Optimization definition Searching for such values of state variables to meet desired parameters as close as possible ITSS 2007, PforzheimGlobal optimization techniques …

Optimization objective function (1) Deviation of the actual parameters of the system from the desired ones ITSS 2007, PforzheimGlobal optimization techniques …

Optimization objective function (2) ITSS 2007, PforzheimGlobal optimization techniques …

More objectives polarization purity (1) ČÁP, A., RAIDA, Z., HERAS PALMERO, E., LAMADRID RUIZ, R. Multi-band planar antennas: a comparative study. Radioengineering, 2005, vol. 14, no. 4, p. 11–20. ITSS 2007, PforzheimGlobal optimization techniques …

More objectives polarization purity (2) RAIDA, Z., HERAS PALMERO, E., LAMADRID RUIZ, R. Four-band patch antenna with U-shaped notches. In Proc. of the16th international Conference on Microwaves, Radar and Wireless Communications MIKON Krakow (Poland), 2006, pp. 111–114. ITSS 2007, PforzheimGlobal optimization techniques …

More objectives directivity patterns (1) ITSS 2007, PforzheimGlobal optimization techniques …

More objectives directivity patterns (2)

More objectives multi-objective formulation ITSS 2007, PforzheimGlobal optimization techniques …

Multi-objective optimization two approaches ITSS 2007, PforzheimGlobal optimization techniques …

Searching for a minimum global versus local methods ITSS 2007, PforzheimGlobal optimization techniques …

Global methods genetic algorithms (1) ITSS 2007, PforzheimGlobal optimization techniques …

Global methods genetic algorithms (2) initial population quality evaluation selection ITSS 2007, Pforzheim

Global methods genetic algorithms (3) crossover mutation ITSS 2007, PforzheimGlobal optimization techniques …

function x = main( G, I, pc, pm) % x(1)= A, x(2)= B, x(3)= h, x(4)= eps load dip_616; % loading neural model Rd = 200.0; % desired input resistance Xd = 0.0; % desired input reactance bit = [ ]; % bits per A, B, h, eps geb = norm( bit, 1) + 1; % bits in chromosome gen = round( rand( I, geb-1)); % 1st generation for g=1:G X = decode( I, bit, gen); % chromosome to A,B,h,eps Z = Tmax * sim( net, X'); % analysis gen(:,geb) = ((Rd-Z(1,:)).^2 + (Xd-Z(2,:)).^2; e(g) = min( gen( :,geb)); % minimum error [val,ind] = min( gen( :,geb)); x = X( ind, :); % best parameters gen = decim( gen, pc, pm, I, geb); end plot( e);

Global methods genetic algorithms (5)

Global methods genetic algorithms (6) ITSS 2007, PforzheimGlobal optimization techniques …

Global methods particle swarm optimization (1) ROBINSON, J., RAHMAT-SAMII, Y. Particle swarm optimization in electromagnetics. IEEE Transactions on Antennas and Propagation. 2004, vol. 52, no. 2, p. 397–407. ITSS 2007, PforzheimGlobal optimization techniques …

Global methods PSO (2) ITSS 2007, Pforzheim

Global methods particle swarm optimization (3) absorbingreflectinginvisible ITSS 2007, PforzheimGlobal optimization techniques …

function out = main( G, I) % x(1)= A, x(2)= B, x(3)= h, x(4)= eps load dip_616; % loading antenna model Rd = 200; % required input resistance Xd = 0; % required input reactance dt = 0.1; % time step c1 = 1.49; % personal scaling factor c2 = 1.49; % global scaling factor x = zeros( I, 5); % agents’ position p = zeros( I, 5); % personal best for n=1:I x(n,1) = *rand(); p(n,1) = x(n,1); x(n,2) = *rand(); p(n,2) = x(n,2); x(n,3) = * rand(); p(n,3) = x(n,3); x(n,4) = * rand(); p(n,4) = x(n,4); p(n,5) = 1e+6; end v = rand( I, 4); % agent velocity g = zeros( 1, 4); % global best e = zeros( G+1, 1); e(1) = 1e+6;

for m=1:G % +++ MAIN ITERATION LOOP +++ w = 0.5*(G-m)/G + 0.4; % inertial weight Z = Tmax * sim( net, x(:,1:4)'); % impedance of agents x(:,5) = ((Rd-Z(1,:)).^2 + (Xd-Z(2,:)).^2 [e(m+1),ind] = min( x( :,5)); % the lowest error if e(m+1)<e(m) g = x( ind, 1:4); % the global best end for n=1:I if x(n,5)<p(n,5) % the personal best p(n,:) = x(n,:); end v(n,:) = w*v(n,:) + c1*rand()*( p(n,1:4)-x(n,1:4)); v(n,:) = v(n,:) + c2*rand()*( g(1,1:4)-x(n,1:4)); x(n,1:4) = x(n,1:4) + dt*v(n,:); if x(n,1) > 9.00, x(n,1)=9.00; end % absorbing walls if x(n,2) > 0.05, x(n,2)=0.05; end if x(n,3) > 1.5, x(n,3)=1.5; end if x(n,4) > 2.2, x(n,4)=2.2; end end end

Global methods particle swarm optimization (5)

Global methods PSO (6) ITSS 2007, PforzheimGlobal optimization techniques …

Searching for a minimum global first, local later ITSS 2007, PforzheimGlobal optimization techniques …

Searching for a minimum global first, local later ITSS 2007, PforzheimGlobal optimization techniques …

Local minimization general algorithm (1) 1.Testing convergence. If the actual estimate of the optimum x k is accurate enough, then the algorithm is terminated. Otherwise, go to 2. 2.Computing search direction. Estimate the best direction p k moving the actual estimate of the optimum x k towards the optimum. ITSS 2007, PforzheimGlobal optimization techniques …

Local minimization general algorithm (2) 3.Computing step length. Estimate scalar  k ensuring the significant decrease of the value of the objective function: F(x k +  k p k ) < F(x k ) 4.Updating the estimate of the minimum. Set x k+1  x k +  k p k, k  k + 1. Go back to 1. ITSS 2007, PforzheimGlobal optimization techniques …

Testing algorithms Rosenbrock function function F = rosenbrock( x) F = 100*( x(2,1) - x(1,1)^2)^ ( 1 - x(1,1))^2; ITSS 2007, PforzheimGlobal optimization techniques …

Steepest descent analytical approach function sda( alpha) M = 10000; x = [ -1; +1]; for m=1:M g(1,1) = -400*x(1,1)*( x(2,1)-x(1,1)^2)-2*(1-x(1,1)); g(2,1) = 200*( x(2,1) - x(1,1)^2); x = x - alpha*g; out(m,:) = x'; end ITSS 2007, PforzheimGlobal optimization techniques …

Steepest descent numerical approach function sdn( h) M = 10000; alpha = 1e-3; x = [ -1; +1]; for m=1:M X1(1,1) = rosenbrock( [x(1,1) + h/2; x(2,1)]); X1(2,1) = rosenbrock( [x(1,1) - h/2; x(2,1)]); X2(1,1) = rosenbrock( [x(1,1); x(2,1) + h/2]); X2(2,1) = rosenbrock( [x(1,1); x(2,1) - h/2]); g(1,1) = (X1(1,1) - X1(2,1)) / h; g(2,1) = (X2(1,1) - X2(2,1)) / h; x = x - alpha*g; out(m,:) = x'; end ITSS 2007, PforzheimGlobal optimization techniques …

Newton method direction, step ITSS 2007, PforzheimGlobal optimization techniques …

Newton method code function newton( x1, x2) M = 10; x = [ x1; x2]; for m=1:M g(1,1) = -400*x(1,1)*(x(2,1)-x(1,1)^2)-2*(1-x(1,1)); g(2,1) = 200*( x(2,1) - x(1,1)^2); H(1,1) = 1200*x(1,1)^ *x(2,1) + 2; H(1,2) = -400*x(1,1); H(2,1) = -400*x(1,1); H(2,2) = 200; x = x - inv( H)*g; out(m,:) = x' end ITSS 2007, PforzheimGlobal optimization techniques …

Steepest descent vs. Newton comparison Steepest descentNewton method Properly chosen step length  k Step length  k = 1 all the time Convergence for Rosenbrock:  7000 steps Convergence for Rosenbrock:  3 steps ITSS 2007, PforzheimGlobal optimization techniques …

Example GPS wire antenna Operation in frequency bands: –L1: central frequency f L1 = MHz –L2: central frequency f L2 = MHz Omni-directional constant gain for the elevation from 5° to 90° Right-hand circular polarization ITSS 2007, PforzheimGlobal optimization techniques …

GPS wire antenna GA v. PSO (1) LUKEŠ, Z., RAIDA, Z. Multi-objective optimiza- tion of wire antennas: genetic algorithms versus particle swarm optimization. Radioengineering, 2005, vol. 14, no. 4, p. 91–97. ITSS 2007, PforzheimGlobal optimization techniques …

GPS wire antenna GA v. PSO (2) LUKEŠ, Z., RAIDA, Z. Multi-objective optimiza- tion of wire antennas: genetic algorithms versus particle swarm optimization. Radioengineering, 2005, vol. 14, no. 4, p. 91–97. ITSS 2007, PforzheimGlobal optimization techniques …

GPS wire antenna GA v. PSO (3) LUKEŠ, Z., RAIDA, Z. Multi-objective optimiza- tion of wire antennas: genetic algorithms versus particle swarm optimization. Radioengineering, 2005, vol. 14, no. 4, p. 91–97. ITSS 2007, PforzheimGlobal optimization techniques …

GPS wire antenna GA v. PSO (4) LUKEŠ, Z., RAIDA, Z. Multi-objective optimiza- tion of wire antennas: genetic algorithms versus particle swarm optimization. Radioengineering, 2005, vol. 14, no. 4, p. 91–97. ITSS 2007, PforzheimGlobal optimization techniques …

GPS wire antenna GA v. PSO (5)

Conclusions Multi-objective optimization: a complex view on the structure Global optimization: perspective designs of a structure Local optimization: tuning of a relatively good design ITSS 2007, PforzheimGlobal optimization techniques …