Modeling of Signaling Pathways Based on Petri nets

Slides:



Advertisements
Similar presentations
TWO STEP EQUATIONS 1. SOLVE FOR X 2. DO THE ADDITION STEP FIRST
Advertisements

1 Modeling Query-Based Access to Text Databases Eugene Agichtein Panagiotis Ipeirotis Luis Gravano Computer Science Department Columbia University.
The Coin Game. SUPPLY CHAIN BASICS Key Learning Points: The dynamics of a supply chain The benefits to be gained from Supply Chain Visibility Demand/Supply.
Fakultät für informatik informatik 12 technische universität dortmund Petri Nets Peter Marwedel TU Dortmund, Informatik 12 Graphics: © Alexandra Nolte,
Slide 1 Insert your own content. Slide 2 Insert your own content.
Generative Design in Civil Engineering Using Cellular Automata Rafal Kicinger June 16, 2006.
By D. Fisher Geometric Transformations. Reflection, Rotation, or Translation 1.
Hybrid Systems Modeling and Analysis of Regulatory Pathways Rajeev Alur University of Pennsylvania LSB, August 2006.
International Technology Alliance In Network & Information Sciences International Technology Alliance In Network & Information Sciences 1 Interference.
T. Nakano. , A. Enomoto. , M. Moore. , R. Egashira. , T. Suda. , K
FIGURE 2.1 The purpose of linearization is to provide an output that varies linearly with some variable even if the sensor output does not. Curtis.
Stochastic algebraic models SAMSI Transition Workshop June 18, 2009 Reinhard Laubenbacher Virginia Bioinformatics Institute and Mathematics Department.
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
0 - 0.
DIVIDING INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
MULTIPLICATION EQUATIONS 1. SOLVE FOR X 3. WHAT EVER YOU DO TO ONE SIDE YOU HAVE TO DO TO THE OTHER 2. DIVIDE BY THE NUMBER IN FRONT OF THE VARIABLE.
SUBTRACTING INTEGERS 1. CHANGE THE SUBTRACTION SIGN TO ADDITION
MULT. INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
Addition Facts
Dependability analysis and evolutionary design optimisation with HiP-HOPS Dr Yiannis Papadopoulos Department of Computer Science University of Hull, U.K.
DCSP-20 Jianfeng Feng Department of Computer Science Warwick Univ., UK
ZMQS ZMQS
Online Event-driven Subsequence Matching over Financial Data Streams Huanmei Wu,Betty Salzberg, Donghui Zhang Northeastern University, College of Computer.
Richmond House, Liverpool (1) 26 th January 2004.
Swiss Federal Institute of Technology Computer Engineering and Networks Laboratory Modular Performance Analysis with Real-Time Calculus Lothar Thiele,
Notes 15 ECE Microwave Engineering
1 Petri Nets I Paul Fishwick author From
1 A Case for MLP-Aware Cache Replacement International Symposium on Computer Architecture (ISCA) 2006 Moinuddin K. Qureshi Daniel N. Lynch, Onur Mutlu,
Florida Techs BioMath Faculty. What is Mathematical Biology? Mathematical Biology is a highly interdisciplinary area that lies at the intersection of.
VOORBLAD.
1. 2 No lecture on Wed February 8th Thursday 9 th Feb 14: :00 Thursday 9 th Feb 14: :00.
Chapter 5 Opener.
“Start-to-End” Simulations Imaging of Single Molecules at the European XFEL Igor Zagorodnov S2E Meeting DESY 10. February 2014.
Constant, Linear and Non-Linear Constant, Linear and Non-Linear
Linking Verb? Action Verb or. Question 1 Define the term: action verb.
Shortest Violation Traces in Model Checking Based on Petri Net Unfoldings and SAT Victor Khomenko University of Newcastle upon Tyne Supported by IST project.
On Specification and Verification of Location- Based Fault Tolerant Mobile Systems Alexei Iliasov, Victor Khomenko, Maciej Koutny and Alexander Romanovsky.
Time Petri Nets Miriam Zia School of Computer Science McGill University.
Past Tense Probe. Past Tense Probe Past Tense Probe – Practice 1.
Introduction to Feedback Systems / Önder YÜKSEL Bode plots 1 Frequency response:
Limits (Algebraic) Calculus Fall, What can we do with limits?
Addition 1’s to 20.
25 seconds left…...
Test B, 100 Subtraction Facts
Vocabulary. The assignment requires identification of the part of speech and two definitions of each word.
Fakultät für informatik informatik 12 technische universität dortmund Lab 3: Scheduling Solution - Session 10 - Heiko Falk TU Dortmund Informatik 12 Germany.
Analysis of engineering system by means of graph representation.
Comparative Microbial Genomics group Center for Biological Sequence Analysis The Technical University of Denmark DTU Methods to Compare Microbial Genomes.
Week 1.
Analyzing Genes and Genomes
We will resume in: 25 Minutes.
Dantzig-Wolfe Decomposition
1 Unit 1 Kinematics Chapter 1 Day
Essential Cell Biology
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
How Cells Obtain Energy from Food
Trade1 ECON 4925 Autumn 2007 Electricity Economics Lecture 6 Lecturer: Finn R. Førsund.
Delta-Oriented Testing for Finite State Machines
Delay Analysis and Optimality of Scheduling Policies for Multihop Wireless Networks Gagan Raj Gupta Post-Doctoral Research Associate with the Parallel.
Compiler Construction
Chapter 6 Intermediate Code Generation
Petri net modeling of biological networks Claudine Chaouiya.
XML Documentation of Biopathways and Their Simulations in Genomic Object Net Speaker : Hungwei chen.
AMATH 382: Computational Modeling of Cellular Systems Dynamic modelling of biochemical, genetic, and neural networks Introductory Lecture, Jan. 6, 2014.
Quantitative Models of Mammalian Cell Signaling Pathways Ravi Iyengar, Ph.D. Department of Pharmacology and Systems Therapeutics Mount Sinai School of.
AMATH 882: Computational Modeling of Cellular Systems
Presentation transcript:

Modeling of Signaling Pathways Based on Petri nets International Symposium on Symbolic Systems Biology (ISSSB’11) Shonan Village Center 13-17 November, 2011 Modeling of Signaling Pathways Based on Petri nets Hiroshi Matsuno Graduate School of Science and Engineering Yamaguchi University

July 4-9, 2004

Feb 22-27, 2009 Petri nets process algebra π-calculus timed automata probabilistic automata finite state linear model differential equations rule based model Boolean model

3 Isolated “paradise” with no distractions 1… 2… 3 Isolated “paradise” with no distractions Merits of NII Shonan Meeting

Petri nets Symbolic representation of systems in graphical manner . . . Symbolic representation of systems in graphical manner In the aims of this meeting … A secondary aim is to identify ways purely symbolic methods have been or could be combined with numerical techniques and applied to emerging problems in experimental and synthetic biology.

Hybrid Petri Net Actually, the hybrid functional Petri net is an extension of hybrid Petri net, which was introduced by Alla in 1997 or 1998. With simple example, I will explain the behavior of hybrid Petri net.

Example of hybrid Petri net tank flow off flow on lever This part models two state mechanism. That is, if this place has a token, it represents the status of water flow off in the tank. This place can hold token during the time assigned at this transition. That is, putting one token in this place represents the action to push the lever. After spending the time assigning at this transition, token is removed though this arc and this transition. It means the flush out of water stops.

Lambda phage genetic switch feedback mechanism From now, I will explain our method to model biological pathways with hybrid functional Petri net. This slide shows lambda phage genetic switch feedback mechanism. This picture is described in biological manner, this means, of course, biologists can understand this picture.

Lambda phage genetic switch feedback mechanism Hybrid functional Petri net model is written over the biological picture. Note that Petri net elements correspond to biological elements such as protein and mRNA. For example, this place corresponds to the protein Cro and this place corresponds to the mRNA of cro. These continuous places holds the concentration of the corresponding substance. On the other hand, these discrete Petri net elements are used to represent the part of switching mechanism in the pathway.

Simulation on Cell Illustrator We have modeled several biological pathways with Genomic Object Net. This slide shows lambda phage genetic switch mechanism. The larger window behind is the Genomic Object Net, where genetic switch mechanism is described with hybrid functional Petri net. As you can see, some of elements of Petri net are changed to graphical images. This is mathematically nonsense, but biologically important, since these changes makes this pathway with Petri net very familiar to biologist. This small windows is the screen of Genomic Object Net Visalizer, which allows us to observe simulation results in animated way.

Signaling pathways stimulus cell membrane enzyme 1 Information transmission from cell membrane to cell nuclei by the cascade of enzymes enzyme 2 ・・・ cell nuclei enzyme n 次にシグナル伝達経路についてです。 シグナル伝達経路は酵素反応として細胞膜から細胞核へと伝達される情報カスケードです. シグナル伝達は細胞増殖,細胞分化,細胞の生死を制御します. シグナル伝達経路は一意な表現で記述することが困難なため、モデル化が困難です。 これは、経路を構成するさまざまな反応が複雑性と多様性を持つことによります。 To control proliferation, differentiation, and life of cells

signaling pathway components これがシグナル伝達経路に登場する幾つかの反応をペトリネットでモデル化したものです.(図を指す) 点線の右側のペトリネットモデルは左側の現象をペトリネットでモデル化したものです.  全部で12パターンに分類しました。ここで示している12パターンはシグナル伝達経路を構成する全ての反応ではありません。なぜなら、全てのシグナル伝達経路を調査していないからです。結合、リン酸化、自己リン酸化、活性部位による活性反応、アダプタータンパク質による会合反応、化学変換、二量体化、移動、イオンチャネル、分離、酵素活性、分解です。  12パターンの中で活性部位による活性化反応、イオンチャネル、酵素活性はシグナル伝達経路において特長的な反応です。この12パターンをモデル化規則としました。 さて、再び代謝経路に話を戻します。

Activation Transduction Component (ATC) Petri net model inactive JNK MEK4,7 . . . Elk-1 a part of signaling pathway . . . MEK4,7 JNK Elk-1 Activation Transduction Component (ATC) A set of reactions influenced by an enzyme 活性変換コンポーネントについて説明します。 左図の、活性化した酵素がすぐ下流のタンパク質を活性化する部分に注目します。 この部分を活性変換コンポーネントとし、酵素の効果が及ぶ範囲とします。さらにペトリネットとの関連を見るために、モデル化規則を用いてペトリネットモデルに変換しました。このペトリネットモデルをアルゴリズムを用いて、ペトリネットモデルにおける活性変換コンポーネントを探索します。 活性変換コンポーネントは(次ページ)のようになります。

Elementary T-invariant ATC = Elementary T-invariant Signaling Pathway TERM Petri net TERM A part of signaling pathway Petri net model inactive JNK MEK4,7 . . . Elk-1 . . . MEK4,7 JNK Elementary T-invariant . . . Elk-1 ペトリネットモデルにアルゴリズムを適用すると、このような初等T-インバリアントを得ることができます。左図と比較すると初等T-インバリアントは活性変換コンポーネントと関連づけることができます。 このことから、シグナル伝達経路の活性変換コンポーネントはペトリネットにおける初等T-インバリアントと関連づけることができます。 次に実際にシグナル伝達経路をペトリネットでモデル化し、アルゴリズムを適用して活性変換コンポーネントを探索します。 ATC

Algorithm to find ATC C. Li, S. Suzuki, Q.-W.Ge, M. Nakata, H. Matsuno, S. Miyano, Structural modeling and analysis of signaling pathways based on Petri nets, J. Bioinfo. Comput. Biol. 4(5), pp.1119-1140, 2006.. このアルゴリズムは、初等T-インバリアントを計算によって求めます。

An Example of signaling pathway modeling Adenylyl cyclase pathway Ras-MAPK pathway PLC pathway outside of a cell inside of a cell 例はGタンパク質シグナル伝達経路です。 (細胞膜、細胞内外を指す) Gタンパク質シグナル伝達経路はアデニリルシクラーゼ経路、Ras-MAPK経路、PLC経路の3種類の経路から成ります。それぞれの経路は結果的に遺伝子産物の産生を引き起こします。 G protein signaling pathways

Petri net model of signaling pathway Adenylyl cyclase pathway Ras-MAPK pathway G protein signaling pathway このシグナル伝達経路を、説明したモデル化規則をもとにしてペトリネットモデルに変換しました。ペトリネットにおいて、この部分がアデニリルシクラーゼ経路、この部分がRas-MAPK経路、この部分がPLC経路です。 このように、モデル化規則をもとにして、シグナル伝達経路をペトリネットでモデル化できます。 次に作成したペトリネットモデルを、アルゴリズムを用いて活性変換コンポーネントを探索しました。 PLC pathway Petri net model of G protein signaling pathway

ATC-based decomposition of signaling pathway 3 N 2 N 1 アデニリルシクラーゼ経路を取り出して、活性変換コンポーネントを探索する手順を説明します。 探索は下流から上流に向かっておこなわれます。まずトラに辞書ンt1に着目し、(この)条件を満たす初等T-インバリアントを計算し、N1を得ました。この初等T-インバリアントをサブネットと呼びます。次にサブネットN1の酵素プレースにトークンを提供するトランジションに着目します。 そしてこの条件を満たす初等T-インバリアントを計算し、サブネットN2を得ます。このような計算をおこない、サブネットN3を得ます。サブネットは酵素の効果が及ぶ範囲です。また活性変換コンポーネントも酵素が効果を及ぼす範囲です。 したがって、ペトリネットモデルにアルゴリズムを適用すると、活性変換コンポーネントを得ることができます。 Gタンパク質シグナル伝達経路の全ての活性変換コンポーネントは(次ページ)のようになります。 G protein signaling pathway

Result of the decomposition 全部で17のサブネットを得ました。そして、アデニリルシクラーゼ経路、Ras-MAPK経路、PLC経路すべてを得ることができました。 それぞれのサブネットは初等T-インバリアントであるので、シグナル伝達経路は初等T-インバリアントの連鎖で表現できるといえます。 signal flow representation  timed Petri net

ATC representation of pathway PLC pathway N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Ras-MAPK pathway Subnet N9 (MEK activation by Raf-1)  is an important reaction in the pathway. More than one pathways are working for producing the same gene product. Easy to acquire the characteristics on the structure of signaling pathways さらにこの図から、Gタンパク質シグナル伝達経路をサブネットの連鎖で表現しました。N1とN3が囲まれているのは、N1とN3が同一の遺伝子産物を産生することによります。この図において、アデニル、Ras-MAPK、PLCはこの部分です。 この図から、サブネットN9が特に重要で、ここを分岐点として4つの経路が展開されています。 Adenylyl cyclase pathway

careful three structures of Petri net α2 β1 β2 β3 α5 β5 α3-1 α4 α3-2 p1 p2 p3 p4 ・・・ tI 1 2 tO β m α n p ・・・ tI 1 m tO β n α 2 s1 s2 sn conflict synchronize acyclic can be used for parameter estimation

Conclusion and future work I am very happy to be here, --- Dagstuhl style meeting in Asia. Delay time determination of transitions for representing signal flow dynamics based on the structure of the Petri net model and experimentally obtained data. Qualitative characterization of signaling pathways for biological and medical applications

Collaborators in Yamaguchi Univ. Petri net modeling Qi-Wei Ge Yuki Murakami Experimental data of signaling components using cell array system Tomoko Furuya This research is partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research (B).