Areas of Spectrum.

Slides:



Advertisements
Similar presentations
Multipulse techniques
Advertisements

Protein NMR terminology COSY-Correlation spectroscopy Gives experimental details of interaction between hydrogens connected via a covalent bond NOESY-Nuclear.
Modern Approaches to Protein structure Determination (6 lectures)
At this point, we have used COSY and TOCSY to connect spin
Protein NMR.
Lecture 8 NMR Spectroscopy Basics and applications in biology.
1 Resonance assignment strategies. 2 Amino acid sequence + The assignment problem.
Nuclei With Spin Align in Magnetic Fields HoHo anti-parallel parallel Alignment Energy  E = h  H o Efficiency factor- nucleus ConstantsStrength of magnet.
NOE Transferring magnetization through scalar coupling is a “coherent” process. This means that all of the spins are doing the same thing at the same time.
Advanced Higher Unit 3 Nuclear Magnetic Resonance Spectroscopy.
1 Signals from coupled protons that are close together (in Hz) can show distorted patterns. When ν >> J, the spectra is said to be first-order. Non-first-order.
(random-orientation)
Structure Determination: MS, IR, NMR (A review)
One-dimensional Spectra Provides 1. Chemical shifts & Relative Intensities 2. J-couplings.
NMR Spectroscopy.
7- Double Resonance 1. Types of double resonance experiments 2. 1 H-{ 1 H} Homonuclear Decoupling C-{ 1 H} Heteronuclear Decoupling.
Magnetic Field (B) A photon generates both an electric and a magnetic field A current passing through a wire also generates both an electric and a magnetic.
2DNMR. Coupling Constants Geminal Coupling are usually negative: CH 2 Vicinal coupling usually positive: CH-CH Why? Coupling is through bonding electrons;
Structure Determination by NMR CHY 431 Biological Chemistry Karl D. Bishop, Ph.D. Lecture 1 - Introduction to NMR Lecture 2 - 2D NMR, resonance assignments.
FT-NMR. Fundamentals Nuclear spin Spin quantum number – ½ Nuclei with spin state ½ are like little bar magnets and align with a B field. Can align with.
Resonance assignment in proteins sequence of lysozyme: KVFGRCELAAAMKRHGLDNYRGYSLGNWVCAA KFESNFNTQATNRNTDGSTDYGILQINSRWWCN DGRTPGSRNLCNIPCSALLSSDITASVNCAKKIVS.
Solving NMR structures I --deriving distance restraints from crosspeak intensities in NOESY spectra --deriving dihedral angle restraints from J couplings;
Case Western Reserve University
FT-NMR.
A. S. Edison University of Florida 2006 Today’s Lecture 13) Mon, Oct 30: Assignments: I a. Important homonuclear (e.g. 1 H) experiments b. Small molecules.
Resonance Assignment for Proteins Classical homonuclear ( 1 H- 1 H) assignment methods: 1. Spin system assignments 2. Sequence-specific assignments 3.
Dynamic Effects in NMR. The timescale in nmr is fairly long; processes occurring at frequencies of the order of chemical shift differences will tend to.
Carbon-13 Nuclear Magnetic Resonance
Physical Chemistry 2 nd Edition Thomas Engel, Philip Reid Chapter 28 Nuclear Magnetic Resonance Spectroscopy.
Nuclear Magnetic Resonance Spectroscopy. The Use of NMR Spectroscopy Used to map carbon-hydrogen framework of molecules Most helpful spectroscopic technique.
NMR Applications in Chemistry
Nuclear Magnetic Resonance Spectroscopy Dr. Sheppard Chemistry 2412L.
Nuclear Magnetic Resonance Spectroscopy. 2 Introduction NMR is the most powerful tool available for organic structure determination. It is used to study.
Nuclear Magnetic Resonance
Nmr Spectroscopy Chemistry Objectives u Nmr basics u chemical shifts u relaxation times u 2-Dimensional Nmr experiments u COSY u NOESY u What kind.
Intro to NMR for CHEM 645 we also visited the website: The Basics of NMR by Joseph P. Hornak, Ph.D. The Basics of NMR.
Chapter 14 NMR Spectroscopy Organic Chemistry 6th Edition Dr. Halligan
Biomolecular Nuclear Magnetic Resonance Spectroscopy BASIC CONCEPTS OF NMR How does NMR work? Resonance assignment Structure determination 01/24/05 NMR.
1 Introduction to Biomolecular NMR. 2 Nuclear Magnetic Resonance Spectroscopy Certain isotopes ( 1 H, 13 C, 15 N, 31 P ) have intrinsic magnetic moment.
NMR Spectroscopy A proton NMR spectrum. Information from peaks: Size (integration), position and multiplicity.
Chapter 13 - Spectroscopy YSU 400 MHz Nuclear Magnetic Resonance Spectrometer(s)
NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY Basics of …….. NMR phenomenonNMR phenomenon Chemical shiftChemical shift Spin-spin splittingSpin-spin splitting.
-1/2 E +1/2 low energy spin state
Biomolecular Nuclear Magnetic Resonance Spectroscopy FROM ASSIGNMENT TO STRUCTURE Sequential resonance assignment strategies NMR data for structure determination.
The number of protons yielding correlations in a 2D NOESY spectrum quickly overwhelms the space available on A 2D map. 15N labeling can help simplify the.
Nuclear Magnetic Resonance Spectroscopy A proton NMR spectrum. Information from peaks: magnitude (integration), position and multiplicity.
JG/10-09 NMR for structural biology DNA purification Protein domain from a database Protein structure possible since 1980s, due to 2-dimensional (and 3D.
Biomolecular Nuclear Magnetic Resonance Spectroscopy BASIC CONCEPTS OF NMR How does NMR work? Pulse FT NMR 2D NMR experiments nD NMR experiments 01/15/03.
NOE and through space correlation
3D Triple-Resonance Methods for Sequential Resonance Assignment of Proteins Strategy: Correlate Chemical Shifts of Sequentially Related Amides to the Same.
Claridge Chapter 8. NOE Transient NOEs In standard 1D NOE, one resonance is saturated, and the system must respond to return to equilibrium by the W0.
RDCs NMR of Biological Macromolecules in Solution More resonances; shorter T2/broader lines Similar basic techniques- HSQC, TOCSY, NOESY Other experiments.
MOLECULAR STRUCTURE ANALYSIS NMR Spectroscopy VCE Chemistry Unit 3: Chemical Pathways Area of Study 2 – Organic Chemistry.
Integration10-6 Integration reveals the number of hydrogens responsible for an NMR peak. The area under an NMR peak is proportional to the number of equivalent.
These 2D methods work for proteins up to about 100 amino acids, and even here, anything from amino acids is difficult. We need to reduce the complexity.
Areas of Spectrum. Remember - we are thinking of each amino acid as a spin system - isolated (in terms of 1 H- 1 H J-coupling) from the adjacent amino.
11.1 Nuclear Magnetic Resonance Spectroscopy
Protein NMR IV - Isotopic labeling
Claridge Chapter 9.
NMR Principles of Structure Determination
13C NMR Spectroscopy Dr. A. G
CARBON-13 NMR.
NMR of proteins (and all things regular…)
核磁共振光譜與影像導論 Introduction to NMR Spectroscopy and Imaging Lecture 05 Basic Two-Dimensional Experiments (Spring Term, 2011) (Fall Term, 2011) (Spring Term,
CHY 431 Biological Chemistry
Structure determination by NMR
Introduction to NMR Spectroscopy
Connections through space
Introduction to NMR Spectroscopy
Introduction to NMR Spectroscopy
Presentation transcript:

Areas of Spectrum

Examples of aliphatic region correlations Ala 1.52 3.95 Thr Asp

The fingerprint region – the 2nd region of interest in the COSY spectrum Areas of Spectrum

COSY Fingerprint region correlating NH-aH protons

COSY Spectrum of a small protein Aliphatic Fingerprint region

Total correlation spectroscopy - TOCSY Water Presaturation Spin locking field The spin locking field (a series of rapid 90o pulses of varying phase) effectively averages the coupling 1H-1H coupling constants over the entire spin system. The dispersion of the NH-aH region allows correlations along the entire system to become visible.

Even if J13 is very small, will still see transfer to it via 2 Homonuclear Hartmann-Hahn or TOCSY experiments Under these conditions magnetisation is transferred very efficiently, at a rate determined by J, between coupled nuclei. The longer the mixing time, the further through the spin system the magnetisation propagates. J13=0.2 Hz 1 2 3 J12=7 Hz J23=5 Hz Even if J13 is very small, will still see transfer to it via 2

8.83ppm 3.95ppm 1.52 bCH3 1.52ppm ALA 49 Ala49 3.95 aH 1.52 bCH3 3.95 aH 8.83ppm

Connecting spin systems – The nuclear Overhauser effect (nOe) At this point, we have used COSY and TOCSY to connect spin systems. i.e. if there are 8 arginines in the protein, we would aim to find 8 arginine patterns. Overlap or missing signals may hamper us in this initial goal. The next step is to use NOESY experiments to sequentially link the amino acid spin systems together. The nuclear Overhauser enhancement provides data on internuclear distances. These can be more directly correlated with molecular structure.

W1I W1s W2 flip flip W0 flip flop W1I W1S Consider 2 protons, I and S, not J-coupled but close in space W1 is the normal transition probability that gives rise to a peak in the spectrum bb W1I W1s W2 flip flip W0 flip flop ba ab W1I W1S aa W1 requires frequencies or magnetic field fluctuations near the Larmor precession frequency i.e. (e.g. 500 MHz at 11.1 Tesla). W2 requires frequencies at wI + ws, or to a good approximation, 2wI or 109 Hz Wo is a zero quantum transition that requires frequencies at wI-ws, i.e. just the chemical shift difference of the protons which could be 0 to a few 1000 Hz)

Rotational correlation time tc In the energy level diagram for a 2 spin system, it is the transitions that involve a simultaneous flip of both spins (cross - relaxation) that cause NOE enhancements. A transition corresponding to a given frequency is promoted by molecular motion at the same frequency. Small molecules in non-viscous solvents tumble at rates around 1011 Hz, while larger molecules such as proteins tumble at rates around 107 Hz. For small molecules, W2 will be greater than W0 and this is the dominant mechanism for producing NOE enhancements (which turn out be positive) For larger molecules W0 will become greater than W2 and this becomes the dominant mechanism leading to NOE enhancements (that are now negative). Rotational correlation time tc rotational correlation time [in ns] is approx. equal to 0.5  molecular mass [in kDa]

For a small molecule, tc is small (~0 For a small molecule, tc is small (~0.3ns) and the product wtc is << 1. In this extreme narrowing limit, rotational motions include 2wo (i.e. fast motions) and W2 is preferred. In large molecules (PROTEINS!), the tumbling is slow and wtc > 1. Wo connects energy levels of similar energy so only low frequencies are required. Therefore this is the preferred mechanism in large molecules. It is known as cross-relaxation. In the 2D NOESY experiment, an additional mixing time is added to the basic COSY sequence. The result is a build up of magnetisation from one nucleus to a close neighbour. 90o 90o 90o t2 t1 Mixing time Presat (magnetisation components of interest lie along –z). Cross relaxation now occurs to nearby nuclei.

The NOE operates ‘through space’, it does not require the nuclei to be chemically bonded. The build-up is proportional to the separation of the two nuclei nuclear separation If we calibrate this function by measuring a known distance in the protein and the intensity of the NOE, we can write where k is a proportionality constant

The power of the NOESY experiment is that the intensity of an NOE peak will be related to the nuclear separation. Strong NOE crosspeaks - 2.5 Å Weak NOE crosspeaks - 2.5-3.5 Å Extending the mixing time will permit nuclei separated by 5Å - not all spin systems will give a detectable peak though. So the absence of a peak does not preclude close approach. Similarly a weaker crosspeak does not always prove a larger internuclear distance. Therefore tend to be cautious and define distance ranges. Strong (1.8-2.5Å), medium (1.8-3.5Å), weak (1.8-5.0Å). Since this works through space we can use the NOE to connect spin systems that we assigned with the COSY and TOCSY spectra.

Sequential ‘walking’ with sequential nOes 1 2 3 4 5 Fingerprint region of a 2D NOESY dH TOCSY gH bH COSY NH 9.0 8.0 7.0 NOE COSY NOE TOCSY NOE Ala

NH-NH Contacts dH NOE gH bH Ala 9.0 8.0 7.0 1 2 3 4 5 dH NOE gH bH Ala 9.0 8.0 7.0 The ‘NH-NH’ region provides an additional source of sequential contacts - note the symmetry around the diagonal and that this contact does not give direction.

aHi-NHi+3 aHi-NHi+1

An a-helix can be recognised by repeating patterns of short range nOes. A short range nOe is defined as a contact between residues less than five apart in the sequence (sequential nOes connect neighbouring residues) For an a-helix we see aHi-NHi+3 and aHi-NHi+4 nOes. i+4 i+3 N H H NOE H i+2 i

A b-strand is distinguished by strong CaHi-NHi+1contacts and long range nOes connecting the strands. A long range nOe connects residues more than 5 residues apart in the chain.

Assignment of secondary structural segments sequential stretches of residues with consistent secondary structure characteristics provide a reliable indication of the location of these structural segments