Quantitative Methods Lecture 3

Slides:



Advertisements
Similar presentations
Introduction to Hypothesis Testing
Advertisements

Research Methods in Politics Chapter 14 1 Research Methods in Politics 14 Understanding Inferential Statistics.
Chapter 10 Introduction to Inference
Introductory Mathematics & Statistics for Business
Copyright © 2010 Pearson Education, Inc. Slide
Overview of Lecture Parametric vs Non-Parametric Statistical Tests.
Overview of Lecture Partitioning Evaluating the Null Hypothesis ANOVA
Lecture 2 ANALYSIS OF VARIANCE: AN INTRODUCTION
Chapter 7 Sampling and Sampling Distributions
The basics for simulations
Proving a Premise – Chi Square Inferential statistics involve randomly drawing samples from populations, and making inferences about the total population.
Chapter 10: The t Test For Two Independent Samples
Inferential Statistics and t - tests
INTRODUCTORY STATISTICS FOR CRIMINAL JUSTICE
9.4 t test and u test Hypothesis testing for population mean Example : Hemoglobin of 280 healthy male adults in a region: Question: Whether the population.
1 T-test for the Mean of a Population: Unknown population standard deviation Here we will focus on two methods of hypothesis testing: the critical value.
6. Statistical Inference: Example: Anorexia study Weight measured before and after period of treatment y i = weight at end – weight at beginning For n=17.
Contingency Tables Prepared by Yu-Fen Li.
1 Confidence Interval for Population Mean The case when the population standard deviation is unknown (the more common case).
Hypothesis Tests: Two Independent Samples
Chapter 9 Introduction to the t-statistic
Chapter 4 Inference About Process Quality
Statistics Review – Part I
Quantitative Analysis (Statistics Week 8)
T-Tests For Dummies As in the books, not you personally!
“Students” t-test.
Comparing Two Population Parameters
Module 16: One-sample t-tests and Confidence Intervals
Putting Statistics to Work
Chi-square and F Distributions
Inferential Statistics
Statistical Inferences Based on Two Samples
© The McGraw-Hill Companies, Inc., Chapter 10 Testing the Difference between Means and Variances.
CHAPTER 15: Tests of Significance: The Basics Lecture PowerPoint Slides The Basic Practice of Statistics 6 th Edition Moore / Notz / Fligner.
Simple Linear Regression Analysis
CHAPTER 14: Confidence Intervals: The Basics
Multiple Regression and Model Building
January Structure of the book Section 1 (Ch 1 – 10) Basic concepts and techniques Section 2 (Ch 11 – 15): Inference for quantitative outcomes Section.
Chapter 16 Inferential Statistics
Unit 4 – Inference from Data: Principles
One sample means Testing a sample mean against a population mean.
1 Introduction to Inference Confidence Intervals William P. Wattles, Ph.D. Psychology 302.
EPIDEMIOLOGY AND BIOSTATISTICS DEPT Esimating Population Value with Hypothesis Testing.
1 Analysis of Variance This technique is designed to test the null hypothesis that three or more group means are equal.
Chapter 9 Hypothesis Testing.
1 Confidence Interval for Population Mean The case when the population standard deviation is unknown (the more common case).
Statistical Analysis. Purpose of Statistical Analysis Determines whether the results found in an experiment are meaningful. Answers the question: –Does.
INFERENTIAL STATISTICS – Samples are only estimates of the population – Sample statistics will be slightly off from the true values of its population’s.
AM Recitation 2/10/11.
Statistical Analysis Statistical Analysis
Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Chapter Inference on the Least-Squares Regression Model and Multiple Regression 14.
Fundamentals of Data Analysis Lecture 4 Testing of statistical hypotheses.
Today’s lesson Confidence intervals for the expected value of a random variable. Determining the sample size needed to have a specified probability of.
A Sampling Distribution
Comparing two sample means Dr David Field. Comparing two samples Researchers often begin with a hypothesis that two sample means will be different from.
1 rules of engagement no computer or no power → no lesson no SPSS → no lesson no homework done → no lesson GE 5 Tutorial 5.
The Practice of Statistics Third Edition Chapter 10: Estimating with Confidence Copyright © 2008 by W. H. Freeman & Company Daniel S. Yates.
CHAPTER 17: Tests of Significance: The Basics
1 Psych 5500/6500 The t Test for a Single Group Mean (Part 1): Two-tail Tests & Confidence Intervals Fall, 2008.
1 Chapter 10: Introduction to Inference. 2 Inference Inference is the statistical process by which we use information collected from a sample to infer.
Essential Question:  How do scientists use statistical analyses to draw meaningful conclusions from experimental results?
5.1 Chapter 5 Inference in the Simple Regression Model In this chapter we study how to construct confidence intervals and how to conduct hypothesis tests.
Chapter 9 Three Tests of Significance Winston Jackson and Norine Verberg Methods: Doing Social Research, 4e.
1 Chapter 8 Introduction to Hypothesis Testing. 2 Name of the game… Hypothesis testing Statistical method that uses sample data to evaluate a hypothesis.
CHAPTER 15: Tests of Significance The Basics ESSENTIAL STATISTICS Second Edition David S. Moore, William I. Notz, and Michael A. Fligner Lecture Presentation.
Statistical principles: the normal distribution and methods of testing Or, “Explaining the arrangement of things”
Copyright © 2009 Pearson Education, Inc t LEARNING GOAL Understand when it is appropriate to use the Student t distribution rather than the normal.
Chapter 9 Introduction to the t Statistic
Chapter 8: Inference for Proportions
Problems: Q&A chapter 6, problems Chapter 6:
Presentation transcript:

Quantitative Methods Lecture 3 Populations and Samples Statistics books often assume we already know the true mean or the true variance of the whole population being studied In the real world, we hardly ever know the true values for the whole population (If we did, there would be no need to carry out a statistical survey…) We usually have to estimate the characteristics of the population from sample surveys

Estimating the Population Mean Each time we take a sample and calculate the mean, we are only obtaining information about PART of the TOTAL POPULATION. We have to use the sample mean (‘x-bar’) as an ESTIMATE of the population mean  (‘mu’) which is usually unknown As an estimate, x-bar is subject to a margin of error

Two more statistics The Standard Error and the Confidence Interval measure the margins of error on our estimate of the true population mean. The usual Confidence Interval is x-bar plus or minus approximately two standard errors (1.96 standard errors to be precise) In other words, we reckon that our estimated mean is probably within about ± 2 Standard Errors of the true mean But there are complications…

Sampling Distributions enable us to make these estimates Let’s draw a number of different samples from a normally distributed population We can calculate the mean of each sample These sample means give us several different estimates of the true population mean When plotted, the sample means group fairly tightly round the population mean in a bell-shape which is much narrower than the normal distribution The larger the samples from which the means are drawn, the tighter this bell-shape will be

More on Sampling Distributions The black curve is a Normal Distribution The blue curve is a Sampling Distribution of various sample means If we used larger samples, the means would group more tightly If we used smaller samples, less tightly

The Standard Error of the Mean It has been found that the Standard Error varies in accuracy with the square root of the number in the sample So the Standard Error = the Standard Deviation divided by N (“the square root of N”) Thus for any given Standard Deviation, the larger the N (the number in the sample), the smaller the Standard Error will be. We use the standard error to estimate the population mean from the sample mean - subject to a margin of error.

The 95% Confidence Interval 95% of the Normal Distribution is within ± (plus or minus) 1.96 Standard Deviations of the Mean. In the same way, probability theory shows that, 95% of the time, the true population mean will lie within ±1.96 Standard Errors of any mean calculated from a large sample. (Small samples are more complicated!)

95% probability is not certainty Because we are estimating, we cannot be 100% certain If something is 95% probable, it is only correct 19 times out of 20 So Confidence Intervals are not infallible, unlike Standard Deviations and Variances But as long as our samples are large (more than 60) margins of error are fairly small

Example A sample of 100 ball-bearings are weighed. They have a mean weight of 150 grams with a standard deviation of 8 grams. Find the mean weight of the population as a whole, within the 95% Confidence Interval. Calculate the Standard Error = Std Deviation / ÖN = 8 / Ö100 = 8/10 = 0.8 We are 95% certain that the population mean will be within ±1.96*0.8 of the sample mean. So the population mean will lie between 150 - 1.96*0.8 and 150 + 1.96*0.8 i.e. between 148.432 and 151.568

Meaning of the Confidence Interval We call it the 95% Confidence Interval because we are fairly (95%) sure the true mean lies between 148.432 and 151.568 We can choose other Confidence Intervals If we want to be 99% sure of the true mean, we use a WIDER Confidence Interval of ±2.57 Standard Errors Then we say we are 99% sure that the true mean lies between 150 ± 2.056

Small Samples - A Complication The smaller the sample, the less accurate the estimate Instead of using 1.96 times the Standard Error, we have to widen the margin ‘T-tables’ show how much we should widen it In our example today, N-1 gives the appropriate ‘degrees of freedom’ to be used. So, if we have a sample of 16 cases, the degrees of freedom = 16-1 = 15 This gives us the row of the table to use

See how T-distributions ‘flatten out’ T-distributions change shape by sample size. The normal distribution is shaped like a bell The T-distributions are shaped more like a cymbal. The larger the sample, the more bell-like the T-distribution becomes.

T-tables show that for N=16, there are N-1=15 degrees of freedom; so we use 2.13 Standard Errors instead of 1.96 Standard Errors for the 95% CI T-DISTRIBUTION CRITICAL VALUES Degrees of P=0.05 P=0.01 freedom (for use with (for use with 95% C.I.) 99% C.I.) 1 12.71 63.66 2 4.30 9.93 3 3.18 5.84 4 2.78 4.60 5 2.57 4.03 6 2.45 3.71 7 2.37 3.50 8 2.31 3.36 9 2.26 3.25 10 2.23 3.17 11 2.20 3.11 12 2.18 3.06 13 2.16 3.01 14 2.15 2.98 15 2.13 2.95 16 2.12 2.92

Large samples reduce margins of error The smaller the sample, the wider the Confidence Interval becomes in terms of Standard Errors. But if N is large (at least 60 and preferably more than 120), Standard Errors are reduced (because we divide by a sizeableN) In addition, we do not have to increase the number of Standard Errors in the Confidence Interval from the basic ±1.96 Taken together, these factors push statisticians towards seeking large samples wherever possible, in order to reduce the margins of error.

Inferential Statistics Putting our Descriptive Statistics to Work

Why Inferential Statistics differ from Descriptive Statistics Means, variances, standard deviations and standard errors are Descriptive Statistics Give anyone a set of figures and the formula and they should come up with the same answers Inferential statistics can never tell you if something is true or not They give you the balance of probabilities about whether something is true.

How we make inferences Provided that the sets of data we are examining are distributed normally (more or less), we can make a number of inferences about how likely (or unlikely) specific events will be Confidence Intervals are a part of Inferential Statistics - they do not tell us what the population mean IS, only that the population mean is likely to fall between certain limits

Inferential Statistics help us to distinguish likely events from unlikely events Thus it is possible to run statistical tests on measurable samples of data We select a probability ‘cut-off’ value (e.g. 95% probable versus 5% probable) and make judgements how likely our outcome is The ‘test statistic’ that we compute tells us whether we have observed a likely event (one that happens 95% of the time) or an unlikely one (one that only happens less than 5% of the time)

Null Hypothesis And Alternative Hypothesis We start with the assumption that nothing is proved - that there is no connection between sets of data, and everything has occurred by chance. This is called the NULL HYPOTHESIS The ALTERNATIVE HYPOTHESIS is that something unlikely or “significant” links the data If our test statistic tells us that we have observed an unlikely event, we REJECT the Null Hypothesis and ACCEPT the Alternative Hypothesis

Example: the ‘Paired’ T-test Suppose that we give people a ‘treatment’ (training, or medication, or lessons) We want to measure whether the ‘treatment’ has improved their results Provided we can measure the outcome, we can test the same sample of people Before and After Treatment and we use the ‘Paired’ T-test

There are many other tests The paired T-test is a simple test to explain Others tests we will consider include tests for whether different samples have achieved different mean scores And tests for whether a score on Variable 1 is linked (‘correlated’) to a score on Variable 2

Example: We give people some training and measure how scores differ after it SCORE BEFORE TRAINING 9 8 6 11 13 16 10 SCORE AFTER TRAINING 12 14 15 10 13 11 9 AFTER minus BEFORE 3 6 7 4 2 -2 -1 PERSON A B C D E F G H I J

To calculate our ‘Paired’ T-test Set up the Null Hypothesis: Any difference in scores after training has occurred by chance Set up the Alternative Hypothesis The difference in mean scores is statistically significant Choose a decision level (‘alpha’) Normally 95% vs 5% (or 0.95 vs 0.05)

When to reject the Null Hypothesis If we can show that the probability that the Null Hypothesis is true has dropped BELOW 5%, we can reject the Null Hypothesis In which case, we accept the Alternative Hypothesis that the training has made a ‘significant’ difference Otherwise, we accept the Null Hypothesis that the training did not change the mean score

Calculating the ‘test statistic’ For each test, we calculate a ‘test statistic’ Then we look in our tables to find out whether that number indicates a likely or an unlikely event In the case of the Paired T-test, the formula for the test statistic is (X-m)  Standard Error

The T-statistic (or ‘T-ratio’) In (X-m)  Standard Error X is the mean difference between before and after scores m is the expected mean difference between before and after scores assuming the Null Hypothesis is true Standard Error is the Standard Deviation  ÖN What will m be?

Calculations for our example SAMPLE MEAN of ‘AFTER minus BEFORE’ column = 23/10 = 2.30 STANDARD DEVIATION (calculated in the same manner as last week) = 2.87 STANDARD ERROR = STDEV/SQRT(N) = 2.87/(SQRT(10)) 0.91 T-statistic = (SAMPLE MEAN (2.30) - EXPECTED MEAN (0)) divided by the STD ERROR (0.91) (2.30-0)/0.91 = T = 2.53 Again, why is m 0?

What does all this mean? Now that we have calculated that the T-statistic = 2.53, what happens? We check this number against the appropriate row of the T-tables The appropriate row will be N-1, or 9 degrees of freedom (because N=10) If our T-statistic is less than the ‘critical value’ in the table, the Null Hypothesis stands If our T-statistic is greater than the ‘critical value’ in the T-table, the Null Hypothesis falls

Bother, there are two columns in the T-tables … T-DISTRIBUTION CRITICAL VALUES Degrees of P=0.05 P=0.01 freedom (for use with (for use with 95% C.I.) 99% C.I.)   8 2.31 3.36 9 2.26 3.25 10 2.23 3.17 Remember we chose the .95 / .05 cut-off level in advance? This means we use the left column Our 2.53 ‘beats’ the Critical Value of 2.26 for 9 degrees of freedom

Concluding the test At our selected probability level, the T-statistic we have calculated is greater than the number in the table Remind me what this means … It means that we REJECT the Null Hypothesis Our result is UNLIKELY to have occurred by chance We conclude that the training HAS significantly changed the mean score

How much have we achieved? Using probability theory and our test statistic, we have made an assessment of the effectiveness of our training But note again that 95% significance is not certainty We are going to be wrong 1 time in 20 In ‘life or death’ situations we may want to be 99% or even 99.9% sure To be 99% sure, we use the right-hand column in the T-table for our ‘critical value’

Plenty to think about … We have covered a lot of ground this week The Null Hypothesis / Alternative Hypothesis approach is the same for all statistical tests So is the idea of selecting the acceptable decision level (or ‘alpha’) in advance But in other tests, we use different statistical calculations and different degrees of freedom to obtain our test statistic

And finally: Suppose we had chosen the 99% / 1% cut-off level for our example, what would the result have been? (pause for thought)…

Happy number-crunching! M.R.Godwin@bath.ac.uk