TESIS on CORONAS-PHOTON S. V. Kuzin (XRAS) and TESIS Team.

Slides:



Advertisements
Similar presentations
The Science of Solar B Transient phenomena – this aim covers the wide ranges of explosive phenomena observed on the Sun – from small scale flaring in the.
Advertisements

000509EISPDR_SciInvGIs.1 EIS Performance and Operations Louise Harra Mullard Space Science Laboratory University College London.
COSPAR E July 22, Paris revised for Nobeyama Symposium 2004 October 29, Kiyosato Takeo Kosugi (ISAS/JAXA, Japan)
Initial Results of EIS Shinsuke Imada (NAOJ) EIS Team.
Workshop „X-ray Spectroscopy and Plasma Diagnostics from the RESIK, RHESSI and SPIRIT Instruments”, 6 – 8 December 2005, Wrocław Spectroscopy Department.
High Altitude Observatory (HAO) – National Center for Atmospheric Research (NCAR) The National Center for Atmospheric Research is operated by the University.
990901EIS_Opt.1 The Instrument: Optical Design Dr. John T. Mariska Data Coordination Scientist Naval Research Laboratory
Optical Astronomy Imaging Chain: Telescopes & CCDs.
Science With the Extreme-ultraviolet Spectrometer (EIS) on Solar-B by G. A. Doschek (with contributions from Harry Warren) presented at the STEREO/Solar-B.
SWD 2005, Taormina, Jun,19-26 An EUV Imaging Detector of Space Solar Telescope Qian Song, Binxun Ye, Zhaowang Zhao National Astronomical Observatories,
The HEROES Balloon- borne Hard X-ray Telescope Colleen A. Wilson-Hodge, J. Gaskin, S. Christe, A. Shih, K. Kilaru, D.A. Swartz, A. F. Tennant, B. Ramsey.
The Sun’s Dynamic Atmosphere Lecture 15. Guiding Questions 1.What is the temperature and density structure of the Sun’s atmosphere? Does the atmosphere.
The involvement of PMOD/WRC in the EUI and SPICE instruments onboard the ESA/NASA Mission Solar Orbiter Haberreiter, Margit; Schmutz, Werner; Gyo, Manfred;
XRT X-ray Observations of Solar Magnetic Reconnection Sites
X Ray Astronomy Presented by:- Mohit Shashwat Ankit.
Physics 202: Introduction to Astronomy – Lecture 13 Carsten Denker Physics Department Center for Solar–Terrestrial Research.
Solar-B XRT XRT-1 The Science and Capability of the Solar-B / X-Ray Telescope Solar-B XRT Presenter: Ed DeLuca Smithsonian Astrophysical Observatory.
SPIRIT/CORONAS-F experiment S.V. Kuzin, V.A. Slemzin, A.M. Urnov P.N. Lebedev Physics Institute of RAS Leninsky pr., 53, Moscow, Russia.
Flares and Eruptive Events Observed with the XRT on Hinode Kathy Reeves Harvard-Smithsonian Center for Astrophysics.
1.B – Solar Dynamo 1.C – Global Circulation 1.D – Irradiance Sources 1.H – Far-side Imaging 1.F – Solar Subsurface Weather 1.E – Coronal Magnetic Field.
Radio Emission from Masuda Sources New Jersey Institute of Technology Sung-Hong Park.
Astronomical Spectroscopy
Coronal waves. EIT has observed wave-like disturbances propagating across the solar disk in association with eruptive events. Yohkoh SXT may have detected.
990901EIS_RR_Science.1 Science Investigation Goals and Instrument Requirements Dr. George A. Doschek EIS US Principal Investigator Naval Research Laboratory.
Optical characteristics of the EUV spectrometer for the normal-incidence region L. Poletto, G. Tondello Istituto Nazionale per la Fisica della Materia.
Grazing-incidence design and others L. Poletto Istituto Nazionale per la Fisica della Materia (INFM) Department of Electronics and Informatics - Padova.
Optical characteristics of the EUV spectrometer (EUS) for SOLO L. Poletto, G. Tondello Istituto Nazionale per la Fisica della Materia (INFM) Department.
Instrumental & Technical Requirements. Science objectives for helioseismology Understanding the interaction of the p-mode oscillations and the solar magnetic.
New Views of the Solar Corona with Hinode X-Ray Telescope (XRT) Taro Sakao (ISAS/JAXA) and the XRT Team (ISAS/JAXA, SAO, NAOJ, NASA/MSFC)
Science Specification of SOLAR-C payload SOLAR-C Working Group 2012 July 23.
SXT Soft X-Ray Telescope Onboard the Yohkoh Satellite SXT.ppt.
Solar-B Mission Preparation Len Culhane – UK EIS Principal Investigator Louise Harra – UK Project Scientist David Williams – UK EIS Chief Observer Mullard.
Solar-B/EIS high-cadence observation for diagnostics of the corona and TR S. Kamio (Kyoto Univ.) Solar-B domestic meeting.
EIS - MSSL/NRL EUV Imaging Spectrometer SOT - ISAS/NAOJ Solar Optical Telescope XRT - SAO/ISAS X-ray Telescope FPP - Lockheed/NAOJ Focal Plane Package.
EUV Spectroscopy. High-resolution solar EUV spectroscopy.
The Atmospheric Imaging Assembly Measuring the Sun’s Surface, Chomosphere, Transition Region, and Corona using visible and extreme Ultra- violet light.
Hinode: A New Solar Observatory in Space H. Hara ( NAOJ/NINS) and the Hinode team 2007 Dec 8.
By: Kiana and Meagan. Purpose  To measure solar magnetic fields  To understand how energy generated by magnetic-field changes in the lower solar atmosphere.
SPECTROSCOPIC DIAGNOSTIC COMPLEX FOR STUDYING PULSED TOKAMAK PLASMA Yu. Golubovskii, Yu. Ionikh, A. Mestchanov, V. Milenin, I. Porokhova, N. Timofeev Saint-Petersburg.
The Field Camera Unit Project definition, organization, planning S. Scuderi INAF – Catania.
Probing Energy Release of Solar Flares M. Prijatelj Carnegie Mellon University Advisors: B. Chen, P. Jibben (SAO)
Spectroscopy Department Lebedev Physical Institute Moscow Solar Extreme Events: Fundamental Science and Applied Aspects (SEE-2005) International Symposium.
The Solar-B EUV Imaging Spectrometer: an Overview of EIS J. L. Culhane Mullard Space Science Laboratory University College London.
18-April-2006XRT Team1 Initial Science Observations Solar-B XRT Ed DeLuca for the XRT Team.
Near Infrared Spectro-polarimeter (NIRSP) Conceptual Design Don Mickey Jeff Kuhn Haosheng Lin.
XRT’s Observational Parameters R. Kano (NAOJ). Contents FOV & Full Disk Imaging Time Cadence & Observation Table New Items as Solar X-ray Telescopes –Pre-flare.
STEREO Planned Launch November, Stereo imaging of Sun; coronal mass ejections from birth to Earth impact. What determines geo-effectiveness of solar.
Science Lessons Learned from TESIS and their Relevance to SWAP V. Slemzin, LPI PROBA 2 SWT, La Roche, 14 June 2010.
The new CLIMSO* instrumentof Pic du Midi Observatory The new CLIMSO* instrument of Pic du Midi Observatory for studying the disk and the inner corona activity.
Optical characteristics of the EUV spectrometer for the grazing-incidence region L. Poletto, G. Tondello Istituto Nazionale per la Fisica della Materia.
N A S A G O D D A R D S P A C E F L I G H T C E N T E R I n t e g r a t e d D e s i g n C a p a b i l i t y / I n s t r u m e n t S y n t h e s i s & A.
Flare Prediction and the Background Corona Coronal Diagnostic Spectrometer Wolter-Schwarzschild Type 2 telescope Two separate spectrometers- the Normal.
1 Coronas-F: payload, orbit, performance V. Slemzin CORONAS – Complex ORbital ObservatioNs of Activity of the Sun.
Model instruments baseline specification and key open issues EUV/FUV High-Throughput Spectroscopic Telescope Toshifumi Shimizu (ISAS/JAXA) SCSDM-4.
020625_ExtReview_Nexus.1 NEXUS / SDO / ILWS SDO Science goals: How does solar variability directly affect life on Earth? SDO areas of interest: –Solar.
Flare Irradiance Studies with the EUV Variability Experiment on SDO R. A. Hock, F. G. Eparvier, T. N. Woods, A. R. Jones, University of Colorado at Boulder.
XUV monochromatic imaging spectroscopy in the SPIRIT experiment on the CORONAS-F mission I. Diagnostics of solar corona plasma by means of EUV Spectroheliograph.
2005/11/15STEREO/Solar-B Workshop1 Solar-B X-ray Telescope (XRT) R. Kano (NAOJ) and XRT Team XRT.
Flares and Eruptive Events Observed with the XRT on Hinode Kathy Reeves Harvard-Smithsonian Center for Astrophysics.
MPI Semiconductor Laboratory, The XEUS Instrument Working Group, PNSensor The X-ray Evolving-Universe Spectroscopy (XEUS) mission is under study by the.
The X-Ray Telescope aboard Solar-B: An Overview Taro Sakao (ISAS/JAXA) and The XRT Team.
06 Oct 05Space Science & Technology Dept1 Solar Orbiter Consortium Meeting 03 Mar 06 Optical Design Of Solar Orbiter Normal Incidence Spectrometer KF Middleton.
F. Pepe Observatoire de Genève Optical astronomical spectroscopy at the VLT (Part 2)
Spectroscopic Observations with SolarB-EIS Helen E. Mason DAMTP, Centre for Mathematical Sciences Giulio Del Zanna, MSSL.
SPIRIT observations of the Sun in 175 Å and scientific tasks for SWAP&LYRA V. Slemzin P.N. Lebedev Physical Institute, Moscow.
Ultra-Violet Imaging Telescope for ASTROSAT
Combining SWAP and LYRA observations
AIRS (Atmospheric Infrared Sounder) Instrument Characteristics
First Assessments of EUVI Performance on STEREO SECCHI
Transition Region and Coronal Explorer (TRACE)
Presentation transcript:

TESIS on CORONAS-PHOTON S. V. Kuzin (XRAS) and TESIS Team

TESIS: scientific tasks Scientific tasks:  Investigation of the most dynamic processes in the solar atmosphere, such as flares, coronal mass ejections, dimmings etc.  Investigation of processes in far solar corona (up to 4 solar radii) in EUV  Study of evolution of large-scale long-life coronal structures: active regions, coronal loops, giant arcades, coronal holes and others.  Determination of the physical parameters (electron temperature and density, differential emission measure) of plasma of coronal structures.

TESIS: targets of observations Targets of observations:  Solar flares – their dynamics, energy balance and physical characteristics  Eruptive processes in the solar atmosphere – triggers and methods of forecasting  Coronal mass ejections – their formation and dynamics  Spectroscopy of coronal plasma in wide temperature range  Investigation of upper Earth atmosphere

TESIS INSTRUMENT OVERVIEW ChannelAimsDescriptionWave- length band Field of view Angular resolution MgXII Imaging Spectro- heliometer (MISH) 10 MK plasma: dynamics, parameters Soft X-ray full-disk Bragg spectroheliometer with spherical bent crystal mirror MgXII A and A doublet 1°.15 (Full solar disk) 2 arc sec / pixel EUV Spectro- heliometer (EUSH) From “cold” to “hot” plasma: parameters by means of imaging spectroscopy EUV full-disk spectroheliometer with grazing incidence diffraction grating and focusing multilayer parabolic mirror A1°.24 (Full solar disk compressed along dispersion) 4.4 arc sec (perpendicular to dispersion) 1.5 arc min (along dispersion) Full-disk EUV Telescopes (FET) High resolution and high cadence images of 0.05 MK and 15 MK plasma Herschelian telescopes with multilayer parabolic mirrors A (telescope I) A (telescope II) 1°.0 (Full solar disk) 1.7 arc sec / pixel Solar EUV Coronograph (SEC) CME structure and dynamics up to 4 solar radii Coronograph based on the Ritchey- Chretien scheme A2°.5 (inner and outer corona from 0.7 to 4 solar radii) 5 arc sec / pixel

METHODS OF TESIS OBSERVATIONS HeII 304 A MgXII 8.42 A FeXX 132 A EUV A TESIS will provide simultaneous imaging of the Sun in 4 spectral channels, including EUV channel A, which allows to derive the density and the temperature composition of the plasma.  Multi-wavelength simultaneous observations of full Sun in 4 spectral channels

 Bragg angle………………………………… 82°.08  Wavelength band…… ………. MgXII A and A doublet  Focal length…………………………… mm  Mirror Aperture………………………71× 103 mm  Field of view ……..………………………….. 1°.15  Angular resolution……………….……. 2 arc sec  Cadence…….………….. up to 1 s (partial frame) 10 sec (full frame)  Image detector….…………..… backside CCD of 2048 × 2048 pixels  CCD pixel size …………………… μ × 13.5 μ MgXII IMAGING SPECTROHELIOMETER overview

MgXII IMAGING SPECTROHELIOMETER CCD detector Back-side 2048x2048 pixel 13.5x13.5 mkm 14 bit ADC Noise - 6e/sec (0  C)

MgXII IMAGING SPECTROHELIOMETER temperature response

 Wavelength band….… – 136 A (telescope I) 290 – 320 A (telescope II)  Focal length……………………………… mm  Mirror Aperture…………………. 100 mm diameter  Field of view ……..……………………………... 1°.0  Angular resolution…………………..…. 1.7 arc sec  Cadence…….…………………1 sec (partial frame) 60 sec (full frame)  Image detector….…………….… backside CCD of 2048 × 2048 pixels  CCD pixel size ………………..…… μ × 13.5 μ FULL-DISK EUV TELESCOPES overview

 Wavelength band….… – 136 A (telescope I) 290 – 320 A (telescope II)  Focal length……………………………… mm  Mirror Aperture…………………. 100 mm diameter  Field of view ……..……………………………... 1°.0  Angular resolution…………………..…. 1.7 arc sec  Cadence…….…………………1 sec (partial frame) 60 sec (full frame)  Image detector….…………….… backside CCD of 2048 × 2048 pixels  CCD pixel size ………………..…… μ × 13.5 μ FULL-DISK EUV TELESCOPES overview

FULL-DISK EUV TELESCOPES temperature response Fe XX (132 A)  T min = 5 × 10 6 K  T max = 1.2 × 10 7 K MgXII channel  T min ………… about 4 × 10 6 K  T max ……………….…… K

 Wavelength band…… ……….…. 280 – 330 A  Ions…..……HeII, SiIX, SiXI, FeXIV-FeXVI, MgVIII, NiXVIII, CaXVII, AlIX, FeXXII and others  Focal length………………………………. 600 mm  Entrance Aperture………………………5× 80 mm  Field of view ……..………………………….. 1°.24 ( Full solar disk compressed along dispersion )  Angular resolution………………..…. 4.4 arc sec  Cadence…….……………………….. 30 – 600 sec  Image detector….…………..… backside CCD of 1024 × 2048 pixels  CCD pixel size …………………… μ × 13.5 μ EUV SPECTROHELIOMETER overview

EUV SPECTROHELIOMETER targets of observations  Spectral diagnostic of solar active regions

SOLAR EUV CORONOGRAPH  Wavelength band……………….………290 – 320 A  Focal length……………………………..…. 600 mm  Mirror aperture…ring of 25 and 85 mm diameters  Field of view ……..……………………………... 2°.5 ( inner and outer corona from 0.7 to 4 solar radii )  Angular resolution…………………….…. 5 arc sec  Temporal resolution…………………..…… 600 sec  Image detector….…………….… backside CCD of 2048 × 2048 pixels  CCD pixel size ………………..…… μ × 13.5 μ

SOLAR EUV CORONOGRAPH

TESIS DAILY DATA TESIS may provide JPEG images (512×512 ) TESIS daily telemetry ~0,5 Gb 250 full FITS files (2048×2048) 1000 Binned FITS files (1024×1024) ~1 hour of movies (10 frames in sec)

TESIS INSTRUMENT  TESIS 6 independent channels (including SPHINX) 2 star trackers 500 MB information per day Full Sun and corona up to 4 solar radii Spatial resolution up to 1.7   OPTICS: large aperture ML normal incidence mirror – new types of high reflective coating Quartz large aperture high quality mirror ML filters  DETECTORS 2048x2048 pixel back-side CCD 14 bit ADC Coated with ML filters

TESIS INSTRUMENT  CONSTRUCTION 16 step microdrivers (doors, shutters, pointing and focusing mechanism etc) Thermo stabilized construction based on thermal pipes Active/passive cooling of CCD  ELECTRONICS 6.4x10 7 operation per second 256MB mass memory Whole instrument control 4 channels readout independently Onboard software updating Onboard processing (including star trackers) Onboard data compression

THANK FOR YOUR ATTENTION