TESIS on CORONAS-PHOTON S. V. Kuzin (XRAS) and TESIS Team
TESIS: scientific tasks Scientific tasks: Investigation of the most dynamic processes in the solar atmosphere, such as flares, coronal mass ejections, dimmings etc. Investigation of processes in far solar corona (up to 4 solar radii) in EUV Study of evolution of large-scale long-life coronal structures: active regions, coronal loops, giant arcades, coronal holes and others. Determination of the physical parameters (electron temperature and density, differential emission measure) of plasma of coronal structures.
TESIS: targets of observations Targets of observations: Solar flares – their dynamics, energy balance and physical characteristics Eruptive processes in the solar atmosphere – triggers and methods of forecasting Coronal mass ejections – their formation and dynamics Spectroscopy of coronal plasma in wide temperature range Investigation of upper Earth atmosphere
TESIS INSTRUMENT OVERVIEW ChannelAimsDescriptionWave- length band Field of view Angular resolution MgXII Imaging Spectro- heliometer (MISH) 10 MK plasma: dynamics, parameters Soft X-ray full-disk Bragg spectroheliometer with spherical bent crystal mirror MgXII A and A doublet 1°.15 (Full solar disk) 2 arc sec / pixel EUV Spectro- heliometer (EUSH) From “cold” to “hot” plasma: parameters by means of imaging spectroscopy EUV full-disk spectroheliometer with grazing incidence diffraction grating and focusing multilayer parabolic mirror A1°.24 (Full solar disk compressed along dispersion) 4.4 arc sec (perpendicular to dispersion) 1.5 arc min (along dispersion) Full-disk EUV Telescopes (FET) High resolution and high cadence images of 0.05 MK and 15 MK plasma Herschelian telescopes with multilayer parabolic mirrors A (telescope I) A (telescope II) 1°.0 (Full solar disk) 1.7 arc sec / pixel Solar EUV Coronograph (SEC) CME structure and dynamics up to 4 solar radii Coronograph based on the Ritchey- Chretien scheme A2°.5 (inner and outer corona from 0.7 to 4 solar radii) 5 arc sec / pixel
METHODS OF TESIS OBSERVATIONS HeII 304 A MgXII 8.42 A FeXX 132 A EUV A TESIS will provide simultaneous imaging of the Sun in 4 spectral channels, including EUV channel A, which allows to derive the density and the temperature composition of the plasma. Multi-wavelength simultaneous observations of full Sun in 4 spectral channels
Bragg angle………………………………… 82°.08 Wavelength band…… ………. MgXII A and A doublet Focal length…………………………… mm Mirror Aperture………………………71× 103 mm Field of view ……..………………………….. 1°.15 Angular resolution……………….……. 2 arc sec Cadence…….………….. up to 1 s (partial frame) 10 sec (full frame) Image detector….…………..… backside CCD of 2048 × 2048 pixels CCD pixel size …………………… μ × 13.5 μ MgXII IMAGING SPECTROHELIOMETER overview
MgXII IMAGING SPECTROHELIOMETER CCD detector Back-side 2048x2048 pixel 13.5x13.5 mkm 14 bit ADC Noise - 6e/sec (0 C)
MgXII IMAGING SPECTROHELIOMETER temperature response
Wavelength band….… – 136 A (telescope I) 290 – 320 A (telescope II) Focal length……………………………… mm Mirror Aperture…………………. 100 mm diameter Field of view ……..……………………………... 1°.0 Angular resolution…………………..…. 1.7 arc sec Cadence…….…………………1 sec (partial frame) 60 sec (full frame) Image detector….…………….… backside CCD of 2048 × 2048 pixels CCD pixel size ………………..…… μ × 13.5 μ FULL-DISK EUV TELESCOPES overview
Wavelength band….… – 136 A (telescope I) 290 – 320 A (telescope II) Focal length……………………………… mm Mirror Aperture…………………. 100 mm diameter Field of view ……..……………………………... 1°.0 Angular resolution…………………..…. 1.7 arc sec Cadence…….…………………1 sec (partial frame) 60 sec (full frame) Image detector….…………….… backside CCD of 2048 × 2048 pixels CCD pixel size ………………..…… μ × 13.5 μ FULL-DISK EUV TELESCOPES overview
FULL-DISK EUV TELESCOPES temperature response Fe XX (132 A) T min = 5 × 10 6 K T max = 1.2 × 10 7 K MgXII channel T min ………… about 4 × 10 6 K T max ……………….…… K
Wavelength band…… ……….…. 280 – 330 A Ions…..……HeII, SiIX, SiXI, FeXIV-FeXVI, MgVIII, NiXVIII, CaXVII, AlIX, FeXXII and others Focal length………………………………. 600 mm Entrance Aperture………………………5× 80 mm Field of view ……..………………………….. 1°.24 ( Full solar disk compressed along dispersion ) Angular resolution………………..…. 4.4 arc sec Cadence…….……………………….. 30 – 600 sec Image detector….…………..… backside CCD of 1024 × 2048 pixels CCD pixel size …………………… μ × 13.5 μ EUV SPECTROHELIOMETER overview
EUV SPECTROHELIOMETER targets of observations Spectral diagnostic of solar active regions
SOLAR EUV CORONOGRAPH Wavelength band……………….………290 – 320 A Focal length……………………………..…. 600 mm Mirror aperture…ring of 25 and 85 mm diameters Field of view ……..……………………………... 2°.5 ( inner and outer corona from 0.7 to 4 solar radii ) Angular resolution…………………….…. 5 arc sec Temporal resolution…………………..…… 600 sec Image detector….…………….… backside CCD of 2048 × 2048 pixels CCD pixel size ………………..…… μ × 13.5 μ
SOLAR EUV CORONOGRAPH
TESIS DAILY DATA TESIS may provide JPEG images (512×512 ) TESIS daily telemetry ~0,5 Gb 250 full FITS files (2048×2048) 1000 Binned FITS files (1024×1024) ~1 hour of movies (10 frames in sec)
TESIS INSTRUMENT TESIS 6 independent channels (including SPHINX) 2 star trackers 500 MB information per day Full Sun and corona up to 4 solar radii Spatial resolution up to 1.7 OPTICS: large aperture ML normal incidence mirror – new types of high reflective coating Quartz large aperture high quality mirror ML filters DETECTORS 2048x2048 pixel back-side CCD 14 bit ADC Coated with ML filters
TESIS INSTRUMENT CONSTRUCTION 16 step microdrivers (doors, shutters, pointing and focusing mechanism etc) Thermo stabilized construction based on thermal pipes Active/passive cooling of CCD ELECTRONICS 6.4x10 7 operation per second 256MB mass memory Whole instrument control 4 channels readout independently Onboard software updating Onboard processing (including star trackers) Onboard data compression
THANK FOR YOUR ATTENTION