1PhiPsi2011 BINP, Novosibirsk Johann Zmeskal, SMI Vienna for the PANDA collaboration at an overview International Workshop on e+e- collisions from Phi.

Slides:



Advertisements
Similar presentations
The Central Straw Tube Tracker In The PANDA Experiment
Advertisements

Hadron Physics with Antiprotons – the PANDA Program Olaf N. Hartmann GSI Darmstadt, Germany INPC 2004 · Göteborg, Sweden.
Carsten Schwarz KP2 Physics with anti protons at the future GSI facility Physics program Detector set-up p e - coolerdetector High Energy Storage.
Hierarchies of Matter matter crystal atom atomic nucleus nucleon quarks m m m m < m (macroscopic) confinement hadron.
Guenther Rosner FAIR - UK DL, 11/10/06 1 Collaboration Universität Basel, IHEP Beijing, [University of Birmingham] Ruhr- Universität Bochum,
Russian Contribution to PANDA Project (Part I) Dmitry Morozov, IHEP (Protvino) 1st FRRC International Seminar Moscow, ITEP June
The Lightweight Straw Tube Tracker for PANDA Detector at GSI Andrey Sokolov *,1, James Ritman 1, Peter Wintz 1, Paola Gianotti 2, Dario Orecchini 2 1 Institut.
PANDA Ulrich Wiedner, FAIR PAC meeting, March 14, 2005.
James Ritman Univ. Giessen Overview of the Proposed Antiproton Facility Antiproton production facility High Energy Storage Ring (HESR) Electron cooling.
C. Schwarz Physics with Antiprotons - Detector - Detector requirements Overview of the detector concept Selected detector components Simulations.
Physics with the PANDA Detector at GSI
STORI’02Carsten Schwarz Physics with p at the Future GSI Facility Physics program Detector set-up p e - coolerdetector High Energy Storage Ring HESR High.
Concept of the PANDA Detector for pp&pA at GSI Physical motivation for hadron physics with pbars The antiproton facility Detector concept Selected simulation.
Sep. 17, 2003KTB The future GSI facility Physics with antiprotons at the GSI future facility The PANDA detector Target options and vertex detector, triggers.
J. Marton, ÖPG-FAKT, Weyer, September 27, FAIR at GSI and the Future of Hadron Physics J. Marton Institute for Medium Energy Physics Austrian Academy.
Journée Thématique IPN Orsay, 2004 PANDA, a new detector for hadronic physics at GSI (FAIR) Carsten Schwarz, GSI ● The FAIR facility  HESR Storage ring.
C. Schwarz Physics with Antiprotons - Detector - Detector requirements Overview of the detector concept Detector components Trigger Costs.
Centauro and STrange Object Research (CASTOR) - A specialized detector system dedicated to the search for Centauros and Strangelets in the baryon dense,
Hadron Physics (I3HP) activities Hadron Physics (I3HP) is part of Integrated Activity of 6’th European Framework. Contract has a form of consortium of.
James Ritman Univ. Giessen PANDA: Experiments to Study the Properties of Charm in Dense Hadronic Matter Overview of the PANDA Pbar-A Program The Pbar Facility.
Oct. 5 th th International Workshop on Heavy Quarkonium 2011 Jim Ritman Mitglied der Helmholtz-Gemeinschaft Status of PANDA.
Workshop on Experiments with Antiprotons at the HESR – April 2002, GSI Charmed Hadrons in Matter Introduction Medium Effects in the light quark sector.
Mitglied der Helmholtz-Gemeinschaft Andrey Sokolov IKP FZ Jülich, Germany The Central Tracker of the PANDA Detector The X International Conference on Instrumentation.
The DIRC projects of the PANDA experiment at FAIR Klaus Föhl on behalf of RICH2007 Trieste 18 October 2007 Cherenkov Group rough-egdes version (isn’t it.
Working Group 5 Summary David Christian Fermilab.
1 Compressed Baryonic Matter at FAIR:JINR participation Hadron Structure 15, 29 th June- 3 th July, 2015 P. Kurilkin on behalf of CBM JINR group VBLHEP,
The GlueX Detector 5/29/091CIPANP The GlueX Detector -- David Lawrence (JLab) David Lawrence (JLab) Electron beam accelerator continuous-wave (1497MHz,
Performance of the PANDA Barrel DIRC Prototype 1 GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt 2 Goethe-Universität Frankfurt Marko Zühlsdorf.
Hadron Physics QCD: are we satisfied with it? Antiproton’s potentiality The PANDA enterprise 1 Paola Gianotti.
The PANDA detector at the future FAIR laboratory Klaus Föhl on behalf of the PANDA collaboration 12 July 2007 SPIN-Praha-2007 and Edinburgh 8 August 2007.
1 Plans for JINR participation at FAIR JINR Contributions: ● Accelerator Complex ● Condensed Baryonic Matter ● Antiproton Physics ● Spin Physics Physics.
Valery Dormenev Institute for Nuclear Problems, Minsk
C. Schwarz Experiments with a cooled p beam on an internal target Physics program Detector set-up p e - coolerdetector High Energy Storage Ring HESR P.
Workshop JINR/BMBF18.Jan.05, H.O. PANDA at FAIR Facility for Antiproton and Ion Research Herbert Orth GSI Darmstadt.
Shashlyk FE-DAQ requirements Pavel Semenov IHEP, Protvino on behalf of the IHEP PANDA group PANDA FE-DAQ workshop, Bodenmais April 2009.
Physics with open charm mesons at
James Ritman Univ. Giessen PANDA: An Experiment To Investigate Hadron Structure Using Antiproton Beams Overview of the GSI Upgrade Overview of the PANDA.
Günther Rosner EINN05, Milos, 24/9/05 1 Prospects for Hadron Physics in Europe Experimental frontiers:  High precision  High luminosity  Polarisation.
James Ritman FZ Juelich EU Design Kick Off Meeting General Introduction: Physics/Design requirements Four Tasks A)Photon detection and readout for DIRC.
International Accelerator Facility for Beams of Ions and Antiprotons at Darmstadt Construction of FAIR Phase-1 December 2005 J. Eschke, GSI Construction.
C. Schwarz Experiments with a cooled p beam on an internal target Physics program Detector set-up Carsten Schwarz p e - coolerdetector High Energy Storage.
H. Koch; Seminar Graduate College Bochum/Dortmund; Hadron Spectroscopy with Antiprotons  Historical Overview  Spetroscopy with antiproton beams.
1 Participation of the Joint Institute for Nuclear Research (Dubna) in PANDA experiment at Future GSI Facility Nuclear Structure Physics Physics with Antiprotons.
FSC Status and Plans Pavel Semenov IHEP, Protvino on behalf of the IHEP PANDA group PANDA Russia workshop, ITEP 27 April 2010.
The DIRC projects of the PANDA experiment at FAIR
Goals of future p-pbar experiment Elmaddin Guliyev Student Seminar, KVI, Groningen University 6 November 2008.
Exploring QCD with Antiprotons PANDA at FAIR M. Hoek on behalf of the PANDA Collaboration IOP Nuclear and Particle Physics Divisional Conference 4-7 April.
– A Novel Detector For Frontier Physics Andrey Sokolov Institute of Nuclear Physics, Jülich Research Center, Germany XVIII International Baldin.
First results from SND at VEPP-2000 S. Serednyakov On behalf of SND group VIII International Workshop on e + e - Collisions from Phi to Psi, PHIPSI11,
P.F.Ermolov SVD-2 status and experimental program VHMP 16 April 2005 SVD-2 status and experimental program 1.SVD history 2.SVD-2 setup 3.Experiment characteristics.
1/28 VISITS TO COMPASS / NA58 Seminar for guides 9 March 2005 Susanne Koblitz Gerhard Mallot.
Introduction: Why is QCD so much fun? The Physics: Glue and Charm:
Peculiarities of the PANDA experimental setup Overview of the PANDA detector Particle Tracking: PANDA MVD Particle Identification: PANDA DIRCs Particle.
PANDA experiment at FAIR (JINR Participation) project PANDA A.G.Olshevskiy for JINR PANDA team VBLHEP – DLNP – LIT - BLTP.
Past Fermilab Accumulator Experiments Antiproton Source Accumulator Ring (Inner Ring) Debuncher Ring (Outer Ring) AP50 Experiment Area PRECISION Precision.
The high performance PANDA detector International Workshop on Antiproton Physics and Technology at FAIR Julian Rieke, JLU Giessen on behalf of the PANDA.
PANDA AntiProton Annihilations at Darmstadt PANDA Experiment Physics and Data Analysis –Charmonium, glueballs, hybrids –Electromagnetic processes Fritz-Herbert.
Carsten Schwarz, EXA08, Vienna The PANDA detector at FAIR ● FAIR, HESR ● PANDA physics topics – Charmonium spectroscopy – Search for hybrids and glueballs.
Physics perspectives at PANDA Hadron Structure and Charm Physics with Antiprotons Alberto Rotondi University of Pavia AntiProton ANnihilations at DArmstadt.
Status of the PANDA MVD Project
Prospect of SiPM application to TOF in PANDA
The PANDA Detector at FAIR
The Status of the CBM Experiment
English for young physicists WS 09/10 Niklas Müller
The Electromagnetic Calorimetry of the PANDA Detector at FAIR
Alexander Vasiliev on behalf of the PANDA Collaboration
IHEP group Shashlyk activity towards TDR
Open and Hidden Charm at PANDA
Plans for nucleon structure studies at PANDA
ACCELERATORS AND DETECTORS
Presentation transcript:

1PhiPsi2011 BINP, Novosibirsk Johann Zmeskal, SMI Vienna for the PANDA collaboration at an overview International Workshop on e+e- collisions from Phi to Psi September 19-22, 2011, Budker INP, Novosibirsk, Russia

Existing facility - GSI: UNILAC < 15 MeV/u SIS < 1-2 GeV/u ESR < 0.8 GeV/u Facility for Antiproton and Ion Research PhiPsi2011 BINP, Novosibirsk 2 HESR PANDA SIS 100 SIS 300 SIS 18 CR/ RESR FLAIR NESR Super RFS GSI

3PhiPsi2011 BINP, Novosibirsk Facility for Antiproton and Ion Research

4PhiPsi2011 BINP, Novosibirsk PANDA Facility for Antiproton and Ion Research Antiproton production bunched mod 50 ns bunches cycle time: 10 s 10 8 per bunch Parallel Operation High duty cycle Rapidly cycling magnets SIS300

5PhiPsi2011 BINP, Novosibirsk Five Pillars of Research at FAIR Nuclear Structure Physics and Nuclear Astrophysics with RIBs Hadron Physics with Antiproton Beams Physics of Nuclear Matter with Relativistic Nuclear Collisions Atomic Physics and Applied Science with Highly Charged Ions and Low Energy Antiprotons Plasma Physics with Highly Bunched Beams

PhiPsi2011 BINP, Novosibirsk6 Stochastic cooling Stochastic cooling Injection Electron cooler High Energy Storage Ring  Up to stored antiprotons Beam momentum: ( ) GeV/c Phase-space cooling  Fixed internal target Operation modes a)High luminosity: L = 2 · cm -2 s -1   p/p  b)High resolution: L = cm -2 s -1   p/p  4 · HESR

PhiPsi2011 BINP, Novosibirsk7 Particle physics Hadron physics Nuclear physics  Study the strong interaction with antiprotons  Questions... Mechanism of confinement ? Inner structure of hadrons ? Origin of mass and spin (macroscopic properties) ? Exotic colour neutral objects? Physics goals of PANDA

8PhiPsi2011 BINP, Novosibirsk HadronSpectroscopy Hadron Spectroscopy Experimental Goals: mass, width & quantum numbers of resonances Charm Hadrons: charmonia, D-mesons, charm baryons to understand new XYZ states, D s (2317) and others Exotic QCD States: glueballs, hybrids, multi-quarks  Spectroscopy with Antiprotons: Production of states of all quantum numbers Resonance scanning with high resolution Physics goals of PANDA

9PhiPsi2011 BINP, Novosibirsk Nuclear Physics Charm in the Medium Mesons in nuclear matter Masses change in nuclei D-mass lower Lower D D threshold J/ψ absorption in nuclei Hypernuclei 3rd dimension in nuclear chart Double hypernuclei production via Ξ - capture  Λ Λ interaction in nucleus Other topics Short range correlations Color transparency Physics goals of PANDA

10PhiPsi2011 BINP, Novosibirsk Physics goals of PANDA HadronStructure Hadron Structure Generalized Parton Distributions ➔ Formfactors and structure functions Timelike Nucleon Formfactors Drell-Yan Process full PWA or polarized beam/target  PANDA Physics Report www-panda.gsi.de

11PhiPsi2011 BINP, Novosibirsk PANDA FAIR 13 m

12PhiPsi2011 BINP, Novosibirsk PANDA Requirements Physics benchmarks: Hybrid charmonium: e.g. 7 photons, PWA Charmonium decays: e.g. J/Ψ → e + e - /µ + µ -, or with π 0 and γ Charm mesons: Weak decays in K 0 S and K ± Hypernuclei: Hyperon cascades Wide angle Compton scattering: High energy photons Proton formfactors: Efficient e ± identification Detector requirements: 4π acceptance High rate capability: 2x10 7 s -1 interactions Efficient event selection  Continuous acquisition Momentum resolution ~1% Vertex info for D, K 0 S, Y (cτ = 317 µm for D ± )  Good tracking Good PID (γ, e, µ, π, K, p)  Cherenkov, ToF, dE/dx γ-detection 1 MeV – 10 GeV  Crystal Calorimeter

13PhiPsi2011 BINP, Novosibirsk The PANDA Spectrometer Target Target SpectrometerForward Spectrometer

14PhiPsi2011 BINP, Novosibirsk PANDA - detection concept

PhiPsi2011 BINP, Novosibirsk15 L. Schmitt, GSI TARGET SPECTROMETERFORWARD SPECTROMETER Dipole Muon ID RICH Vertex Central Tracker Electromag. Calorimeters Muon Range System Drift Chambers Solenoid Target DIRC The PANDA Spectrometer

16PhiPsi2011 BINP, Novosibirsk Beam pipe The PANDA Spectrometer Micro Vertex Detector

17PhiPsi2011 BINP, Novosibirsk The PANDA Spectrometer Central tracker Forward GEM tracker

18PhiPsi2011 BINP, Novosibirsk The PANDA Spectrometer Cherenkov detectors

19PhiPsi2011 BINP, Novosibirsk The PANDA Spectrometer Electromagnetic crystal calorimeters

20PhiPsi2011 BINP, Novosibirsk The PANDA Spectrometer Instrumented yoke Solenoid magnet

21PhiPsi2011 BINP, Novosibirsk The PANDA Spectrometer Muon filter Target Luminositymonitor Dipole magnet

22PhiPsi2011 BINP, Novosibirsk The PANDA Spectrometer Driftchambers Muon range system DIRC

23PhiPsi2011 BINP, Novosibirsk Superconducting magnet  Central field: |B| = B z = 2 T  High field homogeneity:  2%  Dimensions inner bore:  1.9 m / length: 2.7 m Coil and cryostate z beam axis Target pipe warm hole  Outer yoke dimension:  2.3 m / length: 4.9 m  Total weight: ~ 300 t Iron flux return yoke Laminated layers for muon range system PANDA - Solenoid

24PhiPsi2011 BINP, Novosibirsk Superconducting magnet  Field integral (bending power): 2 Tm  Deflection of antiprotons with p =15 GeV/c: 2.2°  Bending variation:  15%  Vertical acceptance:  5°  Horizontal acceptance:  10°  Total weight: 200 t Forward tracking detectors partly integrated PANDA – Dipole magnet

25PhiPsi2011 BINP, Novosibirsk Beam pipe Target pipe Target dumping system Target production Vacuum pumps (VP) ~ 2 m Injection point Primary target setup  Appropriate cut-outs in solenoid magnet  Beam-target cross  Design compatible with all different options PANDA – Target system

26 PhiPsi2011 BINP, Novosibirsk Cluster-jet target  Well adjustable density  Constant luminosity  Cluster size: atoms PANDA – Cluster-jet target system Full-size prototype Achieved density: max. 8  atoms / cm 2 Stable operation  Further density increase: New nozzle design

27PhiPsi2011 BINP, Novosibirsk Pellet target  Higher density  Better vertex definition  Pellet tracking system  Pellet size:  30  m  Pellet frequency: 10 kHz  Problem: Luminosity variations  Smaller pellet sizes  Higher frequency  Dedicated prototypes Achieved density:  4  atoms / cm 2 Pellet stream:  3 mm Hydrogen droplets: < 10  m, 144 kHz PANDA – Pellet target system

28PhiPsi2011 BINP, Novosibirsk Forward spectrometer Target spectrometer Micro-Vertex Detector Central tracking (Helix fit) Forward tracking (Straight lines) Straw-tube layers Straw-tube layers Outer tracker GEM stations GEM stations PANDA – Tracking

29PhiPsi2011 BINP, Novosibirsk Design of the MVD 4 barrels and 6 disks Continuous readout Inner layers: hybrid pixels (100x100 µm 2 ) Outer layers: double sided strips: Rectangles & trapezoids NXYTER readout Mixed forward disks (pixel/strips) Challenges Low mass supports Cooling in a small volume Radiation tolerance PANDA – Micro Vertex Detector

30 Central Tracker  σ rφ ~150µm, σ z ~1mm  δp/p~1% (with MVD)  Material budget ~1% X 0  Straw Tube Tracker 27 µm thin mylar tubes, 1 cm Ø Stability due to 1 bar overpressure  GEM Time Projection Chamber Continuous sampling GEMs to reduce ion feedback Online track finding Forward GEM Tracker  Large area GEM foils  Ultra thin coating PANDA – Central tracker PhiPsi2011 BINP, Novosibirsk

31PhiPsi2011 BINP, Novosibirsk Detector Layout  4500 straws in layers  Tube made of 27 µm thin Al-mylar, Ø=1cm  R in = 150 mm, R out = 420 mm l=1500 mm  Self-supporting straw double layers at ~1 bar overp.(Ar/CO 2 ) Material Budget Max. 26 layers, 0.05 % X/X 0 per layer Total 1.3% X/X 0 Detector performance  r/  resolution: 130 µm  z resolution: ~ 1 mm  Prototype test at COSY-TOF PANDA – Straw tubes

32PhiPsi2011 BINP, Novosibirsk PANDA PID Requirements: Particle identification essential Momentum range 200 MeV/c – 10 GeV/c Different processes for PID needed PID Processes:  Cherenkov radiation: above 1 GeV Radiators: quartz, aerogel, C 4 F 10  Energy loss: below 1 GeV Best accuracy with TPC  Time of flight Problem: no start detector  Electromagnetic showers: EMC for e and γ PANDA – Particle IDentification

33PhiPsi2011 BINP, Novosibirsk Forward spectrometer Target spectrometer Barrel DIRC RICH D etection of I nternally R eflected C herenkov light Radiator material: Fused silica  3   /K separation 0.8 GeV/c  p  5 GeV/cC Radiator materials: Aerogel / C 14 F 10   /K separation 2 GeV/c  p  15 GeV/c R ing I maging CH erenkov detector Disc DIRC PANDA – Cherenkov detectors

34PhiPsi2011 BINP, Novosibirsk Forward spectrometer Target spectrometer Barrel EMC Shashlyk calorimeter Endcap structures Operated at -25°C Cristal: PbWO 4 ~ 15,000 cristals Lead-scintillator sandwiches 351 modules (13 rows / 27 columns) PANDA – Calorimeter

35PhiPsi2011 BINP, Novosibirsk Barrel Calorimeter PWO Crystals LA-SiPM readout, 2x1cm 2 σ(E)/E~1.5%/√E + const. End cap 4000 PWO crystals High occupancy in center LA-SiPM or VPT PANDA PWO Crystals PWO is dense and fast Low γ threshold  Increase light yield: - operation at -25°C (4xCMS) Challenges: - temperature stable to 0.1°C - control radiation damage - low noise electronics Delivery of crystals started PANDA – Calorimeter

36PhiPsi2011 BINP, Novosibirsk Forward spectrometer Target spectrometer Barrel tile hodoscope Time resolution: ( ) ps Scintillator slabs or pads of multigap resistive plate chambers (RPC) Scintillator wall Scintillator slabs Time resolution: ~ 50 ps Quad module Scintillator SiPM PANDA – Time-of-flight systems

37PhiPsi2011 BINP, Novosibirsk PANDA – DAQ Self triggered readout Components: Time distribution system Intelligent frontends Powerful compute nodes High speed network Data Flow: Data reduction Local feature extraction Data burst building Event selection Data logging after online reconstruction Programmable Physics Machine

38PhiPsi2011 BINP, Novosibirsk FAIR will offer unique opportunities for nuclear and hadron physics, plasma and atomic physics PANDA is THE DETECTOR to access the physics in the charm quark sector  Nearly 4  acceptance  High momentum resolution ~1%  Precise vertex resolution ~ 100  m  Good particle identification ( , e ,  ,  , p )  Photon detection in a wide range ( 1 MeV GeV)  High energy resolution ~ few % (or better)  Technical design finished 2011  Installation in 2016 Summary Summary

39PhiPsi2011 BINP, Novosibirsk U Basel IHEP Beijing U Bochum IIT Bombay U Bonn IFIN-HH Bucharest U & INFN Brescia U & INFN Catania JU Cracow TU Cracow IFJ PAN Cracow GSI Darmstadt TU Dresden JINR Dubna (LIT,LPP,VBLHE) U Edinburgh U Erlangen NWU Evanston U & INFN Ferrara U Frankfurt LNF-INFN Frascati U & INFN Genova U Glasgow U Gießen KVI Groningen IKP Jülich I + II U Katowice IMP Lanzhou U Lund U Mainz U Minsk ITEP Moscow MPEI Moscow TU München U Münster BINP Novosibirsk IPN Orsay U & INFN Pavia IHEP Protvino PNPI Gatchina U of Silesia U Stockholm KTH Stockholm U & INFN Torino Politechnico di Torino U & INFN Trieste U Tübingen TSL Uppsala U Uppsala U Valencia SMI Vienna SINS Warsaw TU Warsaw more than 400 physicists from 53 institutions in 16 countries Thank you!