Dakota Henke EECS 823 12/9/2014. Purpose and Applications  UAV-Based Radiometer UPC  Why UAVs? Pros Cons  Soil Moisture and Water Salinity Measurements.

Slides:



Advertisements
Similar presentations
MoistureMap: Multi-Angle Retrieval Sandy Peischl PhD-candidate Jeffrey Walker, Dongryeol Ryu, Christoph Rüdiger, Damian Barrett, Robert Gurney, Jetse Kalma,
Advertisements

MoistureMap: Multi-sensor Retrieval of Soil Moisture Mahdi Allahmoradi PhD Candidate Supervisor: Jeffrey Walker Contributors: Dongryeol Ryu, Chris Rudiger.
The ESA CoSMOS study for the validation of the SMOS L2 prototype K Saleh Contell, Y. Kerr, MJ Escorihuela, G. Boulet, P. Maisongrande, P. de Rosnay, JP.
Tree measurements (Roscommon). Research objective: To compare modeled values of TB (using τ-ω model*) with airborne values of TB over heterogeneous tree-covered.
The Aquarius Salinity Retrieval Algorithm Frank J. Wentz and Thomas Meissner, Remote Sensing Systems Gary S. Lagerloef, Earth and Space Research David.
PERFORMANCE AND POTENTIAL FOR IMPROVEMENT OF THE SMOS DIELECTRIC CONSTANT MODEL S. Guimbard and the BEC team Institut de Ciències del Mar CSIC SMOS Barcelona.
Soil Moisture from Remote Sensing: METOP ASCAT Soil Moisture Retrieval
ElectroScience Lab Remote Sensing of Ice Sheet Subsurface Temperatures Mustafa Aksoy, Joel T. Johnson, and Kenneth C. Jezek* Department of Electrical and.
Near Surface Soil Moisture Estimating using Satellite Data Researcher: Dleen Al- Shrafany Supervisors : Dr.Dawei Han Dr.Miguel Rico-Ramirez.
SMOS – The Science Perspective Matthias Drusch Hamburg, Germany 30/10/2009.
STAR-Light: Enabling a New Vision for Land Surface Hydrology in the Arctic A. W. England and Roger De Roo Atmospheric, Oceanic, and Space Sciences Electrical.
Introduction Global soil moisture is one of the critical land surface initial conditions for numerical weather, climate, and hydrological predictions.
Abstract In the case of the application of the Soil Moisture and Ocean Salinity (SMOS) mission to the field of hydrology, the question asked is the following:
SNOW MONITORING USING GNSS-R TECHNIQUES § Remote Sensing Lab, Dept. TSC, Building D3, Universitat Politècnica de Catalunya, Barcelona, Spain and IEEC CRAE/UPC.
Single Column Experiments with a Microwave Radiative Transfer Model Henning Wilker, Meteorological Institute of the University of Bonn (MIUB) Gisela Seuffert,
6-1 EE/Ge 157b Week 6 EE/Ae 157 a Passive Microwave Sensing.
Fig. 2: Radiometric angular response from deciduous Paulownia trees is plotted. The red, blue, black, and green curves trace the simulated values of four.
Domain Analysis of Radio Frequency Interference Detection Techniques for SMOS -Sidharth Misra and Christopher Ruf University of Michigan, Ann Arbor College.
SMOS Validation Rehearsal Campaign Workshop, 18-19/11/2008, Noordwijkerhout, The Netherlands SMOS Validation Rehearsal Campaign Mediterranean flights C.
SMOS STORM KO meeting 30/01/2012 ESRIN Ocean Surface Remote Sensing at High Winds with SMOS.
1 EE 543 Theory and Principles of Remote Sensing Derivation of the Transport Equation.
© R.S. Lab, UPC IGARSS, Vancouver, July, 2011 OIL SLICKS DETECTION USING GNSS-R E. Valencia, A. Camps, H. Park, N. Rodríguez-Alvarez, X. Bosch-Lluis.
X. Bosch-Lluis 1, H. Park 2, A. Camps 2, S.C. Reising 1, S. Sahoo 1, S. Padmanabhan 3, N. Rodriguez-Alvarez 2, I. Ramos-Perez 2, and E. Valencia 2 1. Microwave.
1 Remote Sensing Laboratory Dept. of Information Engineering and Computer Science University of Trento Via Sommarive, 14, I Povo, Trento, Italy 2.
WATER LEVEL MONITORING USING THE INTERFERENCE PATTERN GNSS-R TECHNIQUE § Remote Sensing Lab, Dept. TSC, Building D3, Universitat Politècnica de Catalunya,
DOCUMENT OVERVIEW Title: Fully Polarimetric Airborne SAR and ERS SAR Observations of Snow: Implications For Selection of ENVISAT ASAR Modes Journal: International.
Princeton University Development of Improved Forward Models for Retrievals of Snow Properties Eric. F. Wood, Princeton University Dennis. P. Lettenmaier,
Aquarius Algorithm Workshop March 2007 College of Engineering Department of Atmospheric, Oceanic & Space Sciences Chris Ruf Space Physics Research.
Pang-Wei Liu 1, Roger De Roo 2, Anthony England 2,3, Jasmeet Judge 1 1. Center for Remote Sensing, Agri. and Bio. Engineering, U. of Florida 2. Atmosphere,
Passive Microwave Remote Sensing
GEOG Fall 2003 Overview of Microwave Remote Sensing (Chapter 9 in Jensen) from Prof. Kasischke’s lecture October 6,2003.
APPLICATIONS OF THE INTEGRAL EQUATION MODEL IN MICROWAVE REMOTE SENSING OF LAND SURFACE PARAMETERS In Honor of Prof. Adrian K. Fung Kun-Shan Chen National.
L-band Microwave Emission of the Biosphere (L-MEB)
William Crosson, Ashutosh Limaye, Charles Laymon National Space Science and Technology Center Huntsville, Alabama, USA Soil Moisture Retrievals Using C-
Roughness Model of Radar Backscattering From Bare Soil Surfaces Amimul Ehsan Electrical Engineering and Computer Science Department, University of Kansas.
Satellite-derived Sea Surface Temperatures Corey Farley Remote Sensing May 8, 2002.
Active Microwave Physics and Basics 1 Simon Yueh JPL, Pasadena, CA August 14, 2014.
SWOT Near Nadir Ka-band SAR Interferometry: SWOT Airborne Experiment Xiaoqing Wu, JPL, California Institute of Technology, USA Scott Hensley, JPL, California.
PASSIVE MICROWAVE TECHNIQUES FOR HYDROLOGICAL APPLICATIONS by : P. Ferrazzoli Tor Vergata University Roma, Italy
OSTST, March 12-15, 2007 – 1 Charles Desportes (CLS)& Estelle Obligis (CLS), Laurence Eymard (LOCEAN) On the Wet Tropospheric Correction for Altimetry.
A Measuring Polygon with a Complex of Polarimetric, Combined Active-Passive Sensors of S-, Ku-, and Ka-band of Frequencies for Soil and Snow Remote Sensing.
Printed by Joint assimilation of in-situ and remotely sensed surface soil moisture and LAI observations in a simplified variational.
DMRT-ML Studies on Remote Sensing of Ice Sheet Subsurface Temperatures Mustafa Aksoy and Joel T. Johnson 02/25/2014.
2011 IEEE International Geoscience And Remote Sensing Symposium IGARSS’11  July 24-29, 2011  Vancouver, C ANADA A synergy between SMOS & AQUARIUS: resampling.
PASSIVE MICROWAVES Figure 5-2 Sensitivity of brightness temperature to geophysical parameters over ocean surface.
MULTI-FREQUENCY, MULTI-POLARIZATION AND ANGULAR MEASUREMENTS OF BARE SOIL, SNOW AND WATER ICE MICROWAVE REFLECTION AND EMISSION BY C-, Ku-, AND Ka-BAND,
1 Surface scattering Chris Allen Course website URL people.eecs.ku.edu/~callen/823/EECS823.htm.
Design Features of a Boresighted GPM Core Radiometer Christopher S. Ruf Dept. of Atmospheric, Oceanic & Space Sciences University of Michigan, Ann Arbor,
CCAR / University of Colorado 1 Airborne GPS Bistatic Radar in CLPX Dallas Masters University of Colorado, Boulder Valery Zavorotny NOAA ETL Stephen Katzberg.
Retrieval of Soil Moisture and Vegetation Canopy Parameters With L-band Radar for a Range of Boreal Forests Alireza Tabatabaeenejad, Mariko Burgin, and.
UAV SAR L band (1.6 GHz) ~20cm In this frequency, insensitive to grain size (Shi & Dozier) Sensitive to density, liquid water content Need dielectric.
Airborne Passive microwave response to soil moisture: A case study for the Rur catchment Sayeh Hasan (1), Carsten Montzka (1), Heye Bogena (1), Chris Rüdiger.
Use of AMSR-E Land Parameter Modeling and Retrievals for SMAP Algorithm Development Steven Chan Eni Njoku Joint AMSR Science Team Meeting Telluride, Colorado.
国家 863 计划微波遥感技术实验室 The National Microwave Remote Sensing Laboratory 11/15/2007 Preparation for Vicarious Calibration of SMOS using Takelimgan Sand Desert.
Objectives The Li-Sparse reciprocal kernel is based on the geometric optical modeling approach developed by Li and Strahler, in which the angular reflectance.
Passive Microwave Remote Sensing. Passive Microwave Radiometry Microwave region: GHz ( cm) Uses the same principles as thermal remote sensing.
Satellite Microwave Radiometry: Current and Future Products Rogre De Roo and Tony England Atmospheric, Oceanic, and Space Sciences.
1 A conical scan type spaceborne precipitation radar K. Okamoto 1),S. Shige 2), T. Manabe 3) 1: Tottori University of Environmental Studies, 2: Kyoto University.
Radiometric Measurements of Whitecaps and Surface Fluxes Magdalena D. Anguelova Remote Sensing Division Naval Research Laboratory Washington, DC, USA In.
Effect of Soil Surface Roughness on Microwave Emission Amimul Ehsan Electrical Engineering and Computer Science Department, University of Kansas December.
Sarah Abelen and Florian Seitz Earth Oriented Space Science and Technology (ESPACE) IAPG, TUM Geodätische Woche 2010 Contributions of different water storage.
New Projects: Collaborators Sought NSF OPP Instrumentation Project: STAR-Light – a 1.4 GHz aperture synthesis radiometer for use on light aircraft in arctic.
Passive Microwave Remote Sensing
Spaceborne Polarimetric Microwave Radiometer Brandon Ravenscroft
Cassini Huygens EECS 823 DIVYA CHALLA.
Spring '17 EECS Intro to Radar Systems
Active Microwave Remote Sensing
Surface scattering Chris Allen
RENISH THOMAS (GPM) Global-Precipitation- Mapper
Surface scattering Chris Allen
Presentation transcript:

Dakota Henke EECS /9/2014

Purpose and Applications  UAV-Based Radiometer UPC  Why UAVs? Pros Cons  Soil Moisture and Water Salinity Measurements Agricultural Coastal

System Design  L-Band (1.4 GHz)  Altitude (< 300 m)  Max Air Speed - 45 m/s  GPS and IMU  Dicke Radiometer Balanced - Tref ~ 315 K  Hexagonal Antenna Beamwidth - 22° Gain dB Efficiency %  Nadir Looking  Bandwidth - 27 MHz  Rcv Noise Temp ~ 790 K  Integration Time ~ 100 ms  Theoretical Temperature Resolution ~ 1.27 K  Calibration (Hot/Cold)  Sampling Rate - 50 Hz

System Analysis/Data Processing  Multiple Passes Weighted Sums Varying Resolutions  Pre/Post-Flight Calibration ‘a(t)’ and ‘b(t)’ Hot Sensitivity 0.84 K Cold Sensitivity 1.22 K  Ignore Cosmic & Downwelling Atmosphere Radiation (relatively constant)  Upwelling and Scattered Radiation ~ 0 K, L ~ 0 dB

Soil Moisture  Dielectric constant vs. Water Content Transisition Point  First 5 cm of soil  Surface Roughness  Incidence Angle  Contribution from vegetation (b-factor)

Experimental Results

References  Kerr, Y.H.; Waldteufel, P.; Wigneron, J.; Martinuzzi, J.; Font, J.; Berger, M. Soil Moisture Retrieval from Space: The Soil Moisture and Ocean Salinity (SMOS) Mission. IEEE Trans. Geosci. Remote Sens. 2001, 39,  Valencia, E.; Acevo, R.; Bosch-Lluis, X.; Aguasca, A.; Rodriquez-Alvarez, N.; Ramos- Perez, I.; Marchan-Hernandez, J.F.; Glenat, M.; Bou, F.; Camps, A. Initial Results of an Airborne Light-Weight L-Band Radiometer. Proceedings of the IEEE International Geoscience and Remote Sensing Syposium 2008, Boston, MA. USA, 2008; pp. II II-1179  Van de Griend, A.A.; Wigneron, J. The b-Factor as a Function of Frequeycny and Canopy Type at H-Polarization. IEEE Trans. Geosci. Remote Sens. 2004, 42,  Acevo-Herrera, R.; Aguasca, A.; Bosch-Lluis, X.; Camps, A. On the Use of Compact L- Band Dicke Radiometer (ARIEL) and UAV for Soil Moisture and Salinity Map Retrieval: 2008/2009 Field Experiments. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium 2009, Cape Town, South Africa, 2009; pp IV729- IV732.  Wang, J.R.; Schmugge, T.J. An Empirical Model for the Complex Dielectric Permittivity of Soils as a Function of Water Content. IEEE Trans. Geosci. Remote Sens. 1980, 18,  Escorihuela, M.J.; Kerr, Y.H.; de Rosney, P.; Wigneron, J.; Calvet, J.; Lemaitre, F. A Simple Model of the Bare Soil Microwave Emission at L-Band. IEEE Trans. Geosci. Remote Sens. 2007, 45,  Acevo-Herrera R, Aguasca A, Bosch-Lluis X, Camps A, Martínez-Fernández J, Sánchez-Martín N, Pérez-Gutiérrez C. Design and First Results of an UAV-Borne L- Band Radiometer for Multiple Monitoring Purposes. Remote Sensing. 2010; 2(7):