Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.

Slides:



Advertisements
Similar presentations
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Evidence that DNA can transform bacteria Frederick Griffith (1928) – Streptococcus.
Advertisements

DNA: The Genetic Material Chapter The Genetic Material Frederick Griffith, 1928 studied Streptococcus pneumoniae, a pathogenic bacterium causing.
Chapter 9 DNA: THE Genetic Material. Transformation Frederick Griffith, a bacteriologist, prepared a vaccine against pneumonia Vaccine – a substance that.
The Molecular Basis of Inheritance
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Molecular Biology of the Gene Chapter 10. Viruses are biological saboteurs Hijacking the genetic material of host cells in order to reproduce themselves.
Evidence that DNA is the Genetic Material
Chapter 16.  In 1953, James Watson and Francis Crick introduced a double-helical model for the structure of deoxyribonucleic acid, or DNA  Hereditary.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 16 The Molecular Basis of Inheritance DNA Structure and function.
CHAPTER 10 Molecular Biology of the Gene
Chapter 16 RQ 1.What is a virus that infects bacteria called? 2.Who actually took the X-ray diffraction photo of DNA’s structure? 3.What are the bonds.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Review When the hydrogen bonds are broken between amino acids in a protein: 1)What.
Chapter 16: Molecular Basis of Inheritance. DNA is the genetic material Early in the 20th century, the identification of the molecules of inheritance.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 16 – Replication of DNA We’ve spent the last few chapters taking about.
Overview: Life’s Operating Instructions DNA, the substance of heredity, is the most celebrated molecule of our time Hereditary information is encoded in.
The MOLECULAR BASIS OF INHERITANCE
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings.
Fig Figure 16.1 How was the structure of DNA determined?
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings DNA Replication chapter 16 continue DNA Replication a closer look p.300 DNA: Origins.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Chapter 16: The Molecular Basis of Inheritance (DNA)
Molecular Biology of the Gene Chapter 12
Chapter 12 DNA. Section 12.1 Identifying the Subsrance of Gene Summarize the process of bacterial transformation. Describe the role of bacterio- phages.
AP Biology DNA The Genetic Material Biology---Yippee!
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 16: The Molecular Basis of Inheritance.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
DNA –The Language Of Life
The Molecular Basis of Inheritance
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 16 The Molecular Basis of Inheritance DNA Structure and function.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
CHAPTER 16 THE MOLECULE BASIS OF INHERITANCE Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Section A: DNA as the Genetic Material.
AP Biology D.N.A  Once the bell rings, please take out your pencil and prepare to finish the Unit 4 Genetics Test  You will have 20 minutes.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Molecular Biology Introduction DNA DNA Replication.
DNA: The Molecule of Heredity Chemical nature of DNA –Chromosomes are composed of protein and deoxyribonucleic acid –Gene – functional segment of DNA located.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Molecular Basis of Inheritance Chapter 16 Figure 16.7a, c C T A A T C G GC A C G A T A T AT T A C T A 0.34 nm 3.4 nm (a) Key features of DNA structure.
DNA 분자구조의 중요성 DNA : 유전 정보가 저장된 물질 Hereditary information is encoded in DNA. 유전 정보 발현의 중심 - DNA directs the development of biochemical, anatomical, physiological,
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Chapter 10 The Molecular Basis of Inheritance The Molecular Basis of Inheritance.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Figure 16.1.
The Molecular Basis of Inheritance
Chapter 16 Molecular Basis of inheritance
The Molecular Basis of Inheritance
Overview: Life’s Operating Instructions
Overview: Life’s Operating Instructions
Overview: Life’s Operating Instructions
Figure 16.1 Figure 16.1 How was the structure of DNA determined?
DNA Structure and Function
The Molecular Basis of Inheritance
Chapter 16 The Molecular Basis of Inheritance.
Video DNA Song- Jam Campus (Resources Page).
DNA: The Molecular Basis of Inheritance
The Molecular Basis of Inheritance
Evidence that DNA is the Genetic Material
DNA Replication In 1953, James Watson and Francis Crick introduced an elegant double-helical model for the structure of deoxyribonucleic acid, or DNA DNA,
The Molecular Basis of Inheritance
The Molecular Basis of Inheritance
The Molecular Basis of Inheritance
The Molecular Basis of Inheritance
The Molecular Basis of Inheritance
DNA: The Molecular Basis of Inheritance
The Molecular Basis of Inheritance
The Molecular Basis of Inheritance
Presentation transcript:

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero DNA: The Molecular Basis of Inheritance

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Overview: Life’s Operating Instructions In 1953, James Watson and Francis Crick shook the world – With an elegant double-helical model for the structure of deoxyribonucleic acid, or DNA Figure 16.1

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings DNA, the substance of inheritance – Is the most celebrated molecule of our time Hereditary information – Is encoded in the chemical language of DNA and reproduced in all the cells of your body

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The Search for the Genetic Material: Scientific Inquiry The role of DNA in heredity – Was first worked out by studying bacteria and the viruses that infect them

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Evidence That DNA Can Transform Bacteria Frederick Griffith was studying Streptococcus pneumoniae – A bacterium that causes pneumonia in mammals He worked with two strains of the bacterium – A pathogenic strain and a nonpathogenic strain Pathogenic- capable of causing disease Nonpathogenic- incapable of causing disease

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Results from Griffith’s experiments. When he mixed heat-killed remains of the pathogenic strain with living cells of the nonpathogenic strain, some of these living cells became pathogenic Bacteria of the “S” (smooth) strain of Streptococcus pneumoniae are pathogenic because they have a capsule that protects them from an animal’s defense system. Bacteria of the “R” (rough) strain lack a capsule and are nonpathogenic. Frederick Griffith injected mice with the two strains as shown below: Griffith concluded that the living R bacteria had been transformed into pathogenic S bacteria by an unknown, heritable substance from the dead S cells. EXPERIMENT RESULTS CONCLUSION Living S (control) cells Living R (control) cells Heat-killed (control) S cells Mixture of heat-killed S cells and living R cells Mouse diesMouse healthy Mouse dies Living S cells are found in blood sample.

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Tranformation Griffith called the phenomenon transformation – Now defined as a change in genotype and phenotype due to the assimilation or integration of external DNA by a cell

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Evidence That Viral DNA Can Program Cells Additional evidence for DNA as the genetic material – Came from studies of a virus that infects bacteria

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Viruses that infect bacteria, bacteriophages – Are widely used as tools by researchers in molecular genetics Figure 16.3 Phage head Tail Tail fiber DNA Bacterial cell 100 nm

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Additional Evidence That DNA Is the Genetic Material Prior to the 1950s, it was already known that DNA – Is a polymer of nucleotides, each consisting of three components: a nitrogenous base, a sugar, and a phosphate group Sugar-phosphate backbone Nitrogenous bases 5 end O–O– O P O CH O–O– H H O H H H 3 1 H O CH 3 N O N H Thymine (T) O OP O O–O– CH 2 H H O H H H H N N N H N H H Adenine (A) O O P O O–O– CH 2 H H O H H H H H H H N N N O Cytosine (C) O O P O CH O–O– H O H H 3 1 OH 2 H N N N H O N N H H H H Sugar (deoxyribose) 3 end Phosphate Guanine (G) DNA nucleotide 2 N Figure 16.5

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Maurice Wilkins and Rosalind Franklin – Were using a technique called X-ray crystallography to study molecular structure Rosalind Franklin – Produced a picture of the DNA molecule using this technique (a) Rosalind Franklin Franklin’s X-ray diffraction Photograph of DNA (b) Figure 16.6 a, b

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Watson and Crick deduced that DNA was a double helix Figure 16.7a, c C T A A T C G GC A C G A T A T AT T A C T A 0.34 nm 3.4 nm (a) Key features of DNA structure G 1 nm G (c) Space-filling model T – Through observations of the X-ray crystallographic images of DNA

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings DNA double- helical structure DNA – composed of two antiparallel sugar-phosphate backbones, with the nitrogenous bases paired in the molecule’s interior The nitrogenous bases – Are paired in specific combinations: adenine with thymine, and cytosine with guanine – A goes with T, and C goes with G

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Hydrogen Bonding between bases: O –O–O O OH O –O–O O O H2CH2C O –O–O O O H2CH2C O –O–O O O O O O T A C G C A T O O O CH 2 O O–O– O O 5 end Hydrogen bond 3 end G P P P P O OH O–O– O O O P P O–O– O O O P O–O– O O O P (b) Partial chemical structure H2CH2C 5 end Figure 16.7b O

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Purine- A & GPyramidine- C & T N H O CH 3 N N O N N N NH Sugar Adenine (A) Thymine (T) N N N N Sugar O H N H N H N O H H N Guanine (G) Cytosine (C) Figure 16.8 H

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The Basic Principle: Base Pairing to a Template Strand Since the two strands of DNA are complementary – Each strand acts as a template for building a new strand in replication

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings In DNA replication – The parent molecule unwinds, each strand is now a template, and two new daughter strands are built based on base-pairing rules. (a) The parent molecule has two complementary strands of DNA. Each base is paired by hydrogen bonding with its specific partner, A with T and G with C. (b) The first step in replication is separation of the two DNA strands. (c) Each parental strand now serves as a template that determines the order of nucleotides along a new, complementary strand. (d) The nucleotides are connected to form the sugar-phosphate backbones of the new strands. Each “daughter” DNA molecule consists of one parental strand and one new strand. A C T A G A C T A G A C T A G A C T A G T G A T C T G A T C A C T A G A C T A G T G A T C T G A T C T G A T C T G A T C Figure 16.9 a–d

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings DNA Replication: A Closer Look The copying of DNA – Is remarkable in its speed and accuracy More than a dozen enzymes and other proteins – Participate in DNA replication

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Getting Started: Origins of Replication The replication of a DNA molecule – Begins at special sites called origins of replication, where the two strands are separated

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Figure New strandTemplate strand 5 end 3 end Sugar A T Base C G G C A C T P P P OH P P 5 end 3 end 5 end A T C G G C A C T 3 end Pyrophosphate 2 P OH Phosphate Elongating a New DNA Strand Elongation of new DNA at a replication fork – Is catalyzed by enzymes called DNA polymerases, which add nucleotides from the 5’ to 3’ direction on the new strand. Nucleoside triphosphate

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings DNA polymerases add nucleotides to complete strands DNA Polymerase can synthesize a complementary strand continuously, moving toward the replication fork

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The DNA Replication Machine as a Stationary Complex The various proteins that participate in DNA replication – Form a single large complex, a DNA replication “machine” The DNA replication machine – Is probably stationary during the replication process

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Proofreading and Repairing DNA DNA polymerases proofread newly made DNA replacing any incorrect nucleotides In mismatch repair of DNA repair enzymes correct errors in base pairing

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Telomeres:

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Eukaryotic chromosomal DNA molecules – Have at their ends nucleotide sequences, called telomeres, that postpone the erosion of genes near the ends of DNA molecules Figure µm