Warmup!:
Extra credit opportunity! Proving corollary from chp. 7 (3 points) Don’t need statement/reason proof, just algebra (hint use similar triangles, not pythagorean theorem)
Theorem 7-4 Side-Splitter Theorem If a line parallel to one side of a triangle intersects the other two sides, then it divides those sides proportionally. B C G D F If GB // DF, then
Proof of side-splitter thm B C G D F 1.) m<C=m<C1.) Given 2.) m<CDF=m<CGB2.) “ “ 3.) ∆CDF~∆CGB3.) AA 4.) x-y=z4.) seg. Sub. 5.) r-t=w5.) “ “ 6.) x = r6.) def. similar y t 7.) x -1 = r -17. Subtr. Prop. y t 8.) x - y = r – y8.) subs. y y y y9.)10.) y t x r z w Prove that z/y=w/t
Examples x x x 10
Corollary to Theorem 7-4 If three parallel lines intersect two transversals, then they divide the transversals proportionally. A B C G F D If AD // BF // CG, then
Examples 5 7 x x 24 - x
Theorem 7-5 Triangle Angle-Bisector Theorem If a ray bisects an angle of a triangle, then it divides the opposite side into segments proportional to the other two sides. If DG bisects FDE then GF D E Proof: riangle-properties/angle_bisectors/v/angle- bisector-theorem-proof riangle-properties/angle_bisectors/v/angle- bisector-theorem-proof
Examples x x x 6
Tonight’s homework: pg