Spectroscopy of a forbidden transition in a 4 He BEC and a 3 He degenerate Fermi gas Rob van Rooij, Juliette Simonet*, Maarten Hoogerland**, Roel Rozendaal,

Slides:



Advertisements
Similar presentations
Photoexcitation and Ionization of Cold Helium Atoms R. Jung 1,2 S. Gerlach 1,2 G. von Oppen 1 U. Eichmann 1,2 1 Technical University of Berlin 2 Max-Born-Institute.
Advertisements

J. Mauricio López R. Centro Nacional de Metrología, CENAM.
High-resolution spectroscopy with a femtosecond laser frequency comb Vladislav Gerginov 1, Scott Diddams 2, Albrecht Bartels 2, Carol E. Tanner 1 and Leo.
Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center.
Ultracold Alkali Metal Atoms and Dimers: A Quantum Paradise Paul S. Julienne Atomic Physics Division, NIST Joint Quantum Institute, NIST/U. Md 62 nd International.
World of ultracold atoms with strong interaction National Tsing-Hua University Daw-Wei Wang.
World of zero temperature --- introduction to systems of ultracold atoms National Tsing-Hua University Daw-Wei Wang.
Rydberg physics with cold strontium James Millen Durham University – Atomic & Molecular Physics group.
Danielle Boddy Durham University – Atomic & Molecular Physics group Laser locking to hot atoms.
Graham Lochead YAO 2009 Towards a strontium pyramid MOT Graham Lochead Durham University
X-ray Emission Spectroscopy Cormac McGuinness Physics Department Trinity College Dublin Soft x-ray emission and resonant inelastic.
Studying our cold Rydberg gas James Millen. Level scheme (5s 2 ) 1 S 0 461nm 32MHz (5s5p) 1 P 1 (5sns) 1 S 0 (5snd) 1 D 2 Continuum ~413nm Studying our.
Studying a strontium MOT – group meeting Studying a strontium MOT James Millen.
1 8.1Atomic Structure and the Periodic Table 8.2Total Angular Momentum 8.3Anomalous Zeeman Effect Atomic Physics CHAPTER 8 Atomic Physics What distinguished.
The Forbidden Transition in Ytterbium ● Atomic selection rules forbid E1 transitions between states of the same parity. However, the parity-violating weak.
Reducing Decoherence in Quantum Sensors Charles W. Clark 1 and Marianna Safronova 2 1 Joint Quantum Institute, National Institute of Standards and Technology.
Progress on Light Scattering From Degenerate Fermions Seth A. M. Aubin University of Toronto / Thywissen Group May 20, 2006 DAMOP 2006 Work supported by.
On the path to Bose-Einstein condensate (BEC) Basic concepts for achieving temperatures below 1 μK Author: Peter Ferjančič Mentors: Denis Arčon and Peter.
DeMille Group Dave DeMille, E. Altuntas, J. Ammon, S.B. Cahn, R. Paolino* Physics Department, Yale University *Physics Department, US Coast Guard Academy.
Studying dipolar effects in degenerate quantum gases of chromium atoms G. Bismut 1, B. Pasquiou 1, Q. Beaufils 1, R. Chicireanu 2, T. Zanon 3, B. Laburthe-Tolra.
Spectral Line Physics Atomic Structure and Energy Levels Atomic Transition Rates Molecular Structure and Transitions 1.
Laser-microwave double resonance method in superfluid helium for the measurement of nuclear moments Takeshi Furukawa Department of Physics, Graduate School.
Experiments with Trapped Potassium Atoms Robert Brecha University of Dayton.
Collinear laser spectroscopy of 42g,mSc
Helium Spectroscopy Spectroscopy of a forbidden transition in a 4 He BEC and a 3 He degenerate Fermi gas Rob van Rooij, Juliette Simonet*, Maarten Hoogerland**,
Towards a finite ensemble of ultracold fermions Timo Ottenstein Max-Planck-Institute for Nuclear Physics Heidelberg 19th International IUPAP Conference.
High-performance Apparatus for Bose-Einstein Condensation of Rubidium Yoshio Torii Erik Streed Micah Boyd Gretchen Campbell Pavel Gorelik Dominik Schneble.
Photoassociation Spectroscopy of Ytterbium Atoms with Dipole-allowed and Intercombination Transitions K. Enomoto, M. Kitagawa, K. Kasa, S. Tojo, T. Fukuhara,
Phys 102 – Lecture 26 The quantum numbers and spin.
Collective excitations in a dipolar Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD.
Ultracold 3 He and 4 He atoms near quantum degeneracy: QED test and the size of the helion and  -particle Rob van Rooij, Joe Borbely, Juliette Simonet*,
Experiments with ultracold RbCs molecules Peter Molony Cs Rb.
Coherent excitation of Rydberg atoms on an atom chip
Spin-statistics theorem As we discussed in P301, all sub-atomic particles with which we have experience have an internal degree of freedom known as intrinsic.
Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8 Zheng-Tian Lu Argonne National Laboratory University of Chicago Funding: DOE, Office of.
Collaborations: L. Santos (Hannover) Students: Antoine Reigue, Ariane A.de Paz (PhD), B. Naylor, A. Sharma (post-doc), A. Chotia (post doc), J. Huckans.
Progress of the Laser Spectroscopy Program at Bridgewater State College Greg Surman, Brian Keith, and Edward Deveney Department of Physics, Bridgewater.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
Fang Wang & Timothy C. Steimle Dept. Chem. & BioChem., Arizona State University, Tempe, AZ,USA The 65 th International Symposium on Molecular Spectroscopy,
Trap loss of spin-polarized 4 He* & He* Feshbach resonances Joe Borbely ( ) Rob van Rooij, Steven Knoop, Wim Vassen.
B.E.C.(Bose-Einstein Condensation) 발표자 : 이수룡 (98).
Resonant dipole-dipole energy transfer from 300 K to 300μK, from gas phase collisions to the frozen Rydberg gas K. A. Safinya D. S. Thomson R. C. Stoneman.
Prospects for ultracold metastable helium research: phase separation and BEC of fermionic molecules R. van Rooij, R.A. Rozendaal, I. Barmes & W. Vassen.
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Ultracold Helium Research Roel Rozendaal Rob van Rooij Wim Vassen.
QUEST - Centre for Quantum Engineering and Space-Time Research Multi-resonant spinor dynamics in a Bose-Einstein condensate Jan Peise B. Lücke, M.Scherer,
The anisotropic excitation spectrum of a chromium Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Sorbonne Paris Cité Villetaneuse.
Laser Cooling and Trapping Magneto-Optical Traps (MOTs) Far Off Resonant Traps (FORTs) Nicholas Proite.
Dynamics of Low Density Rydberg Gases Experimental Apparatus E. Brekke, J. O. Day, T. G. Walker University of Wisconsin – Madison Support from NSF and.
QUEST - Centre for Quantum Engineering and Space-Time Research 1 A continuous loading scheme for a dipole trap.
Bose-Einstein Condensates The Coldest Stuff in the Universe Hiro Miyake Splash! November 17, 2012.
D. Jin JILA, NIST and the University of Colorado $ NIST, NSF Using a Fermi gas to create Bose-Einstein condensates.
Optical Pumping Simulation of Copper for Beta-NMR Experiment Julie Hammond Boston University ISOLDE, CERN
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Production of vibrationally hot H 2 (v=10–14) from H 2 S photolysis Mingli Niu.
Rydberg atoms part 1 Tobias Thiele.
Phase separation and pair condensation in spin-imbalanced 2D Fermi gases Waseem Bakr, Princeton University International Conference on Quantum Physics.
Agenda Brief overview of dilute ultra-cold gases
Ultracold gases Jami Kinnunen & Jani-Petri Martikainen Masterclass 2016.
Laser manipulation of nuclear transitions: experiment.
R.K. Altmann, L.S. Dreissen, S. Galtier and K.S.E. Eikema
7. Ideal Bose Systems Thermodynamic Behavior of an Ideal Bose Gas
Zeeman effect HFS and isotope shift
Lasers and effects of magnetic field
State evolution in cold helium Rydberg gas
Hydrogen relativistic effects II
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Multielectron Atoms The quantum mechanics approach for treating multielectrom atoms is one of successive approximations The first approximation is to treat.
Cold Atom project 12/02/2019.
Diode Laser Experiment
Presentation transcript:

Spectroscopy of a forbidden transition in a 4 He BEC and a 3 He degenerate Fermi gas Rob van Rooij, Juliette Simonet*, Maarten Hoogerland**, Roel Rozendaal, Joe Borbely, Kjeld Eikema, and Wim Vassen Institute for Lasers, Life and Biophotonics, VU University, Amsterdam * École Normale Supérieure, Laboratoire Kastler-Brossel, Paris, France ** University of Auckland, Auckland, New Zealand

eV Singlet (S=0) Parahelium Triplet (S=1) Orthohelium Orbital angular momentum 1s 2s 3s 3p 2p 3d 2s 3s 3p 2p 3d First excited state: 19.8 eV Always one 1s electron No electric-dipole- allowed transitions between singlet and triplet states He Level Scheme He +

He Level Scheme Lifetimes 2 1 S 0 : 20 ms 2 3 S 1 : 8000 s(He*) eV Orbital angular momentum 1s 1s2s 1 S 0 2p 1s2s 3 S 1 (He*) 2p

He Level Scheme Lifetimes 2 1 S 0 : 20 ms 2 3 S 1 : 8000 s(He*) 2 3 S 1 → laser cooling and trapping eV Orbital angular momentum 1s 1s2s 1 S 0 2p 1s2s 3 S 1 (He*) 2p

He Level Scheme Lifetimes 2 1 S 0 : 20 ms 2 3 S 1 : 8000 s(He*) 2 3 S 1 → laser cooling and trapping 2 3 S 1 → 2 1 S 0 (M1): 1557 nm A 21 = 9.1 x s -1 Γ = 2π x 8 Hz QED effects strongest for low- lying S states eV Orbital angular momentum 1s 1s2s 1 S 0 2p 1s2s 3 S 1 (He*) 2p 1557nm

He Level Scheme Lifetimes 2 1 S 0 : 20 ms 2 3 S 1 : 8000 s(He*) 2 3 S 1 → laser cooling and trapping 2 3 S 1 → 2 1 S 0 (M1): 1557 nm A 21 = 9.1 x s -1 Γ = 2π x 8 Hz QED effects strongest for low- lying S states 2 3 S 1 can be trapped at 1557nm (2 3 S→2 3 P : 1083 nm) eV Orbital angular momentum 1s 1s2s 1 S 0 2p 1s2s 3 S 1 (He*) 2p 1557nm

He Level Scheme Lifetimes 2 1 S 0 : 20 ms 2 3 S 1 : 8000 s(He*) 2 3 S 1 → laser cooling and trapping 2 3 S 1 → 2 1 S 0 (M1): 1557 nm A 21 = 9.1 x s -1 Γ = 2π x 8 Hz QED effects strongest for low- lying S states 2 3 S 1 can be trapped at 1557nm (2 3 S→2 3 P : 1083 nm) 2 1 S 0 anti-trapped eV Orbital angular momentum 1s 1s2s 1 S 0 2p 1s2s 3 S 1 (He*) 2p 1557nm

He Level Scheme Lifetimes 2 1 S 0 : 20 ms 2 3 S 1 : 8000 s(He*) 2 3 S 1 → laser cooling and trapping 2 3 S 1 → 2 1 S 0 (M1): 1557 nm A 21 = 9.1 x s -1 Γ = 2π x 8 Hz QED effects strongest for low- lying S states 2 3 S 1 can be trapped at 1557nm (2 3 S→2 3 P : 1083 nm) 2 1 S 0 anti-trapped Similar for fermionic isotope 3 He Isotope shift eV Orbital angular momentum 1s 1s2s 1 S 0 2p 1s2s 3 S 1 (He*) 2p 1557nm

Experimental setup Crossed optical dipole trap at 1557 nm Bose-Einstein condensate of 4 He* Degenerate Fermi gas of 3 He* Dipole trap laser: 40 MHz detuned from atomic transition

Experimental setup Crossed optical dipole trap at 1557 nm Bose-Einstein condensate of 4 He* Degenerate Fermi gas of 3 He* Absorption imaging Dipole trap laser: 40 MHz detuned from atomic transition

Experimental setup Crossed optical dipole trap at 1557 nm Bose-Einstein condensate of 4 He* Degenerate Fermi gas of 3 He* Absorption imaging Dipole trap laser: 40 MHz detuned from atomic transition Time of Flight (ms) MCP Signal (a.u.) TOF on Micro-channel Plate (MCP)

Experimental setup Crossed optical dipole trap at 1557 nm Bose-Einstein condensate of 4 He* Degenerate Fermi gas of 3 He* Time of Flight (ms) MCP Signal (a.u.) TOF on Micro-channel Plate (MCP) Absorption imaging Dipole trap laser: 40 MHz detuned from atomic transition Mode-locked erbium doped fiber laser (Menlo Systems) Referenced to a GPS-controlled Rubidium clock

Load a 4 He BEC or 3 He DFG from magnetic trap into optical dipole trap Apply spectroscopy beam Measurement sequence

Load a 4 He BEC or 3 He DFG from magnetic trap into optical dipole trap Apply spectroscopy beam Turn off the trap and record MCP signal Determine remaining atom number Measurement sequence Time of Flight (ms) MCP Signal (a.u.)

Load a 4 He BEC or 3 He DFG from magnetic trap into optical dipole trap Apply spectroscopy beam Turn off the trap and record MCP signal Determine remaining atom number Increment laser frequency via Measurement sequence FWHM: 90 kHz Beat frequency (MHz) Remaining atoms (%) Time of Flight (ms) MCP Signal (a.u.)

Systematics Recoil shift, 20 kHz Mean field, < exp. uncertainty

Systematics Recoil shift, 20 kHz Mean field, < exp. uncertainty Zeeman shift 2 3 S 1 M J =+1 M J = 0 M J =-1 M J =+1 M J =0 M J =-1 f R F Energy 0 B-field

Systematics Recoil shift, 20 kHz Mean field, < exp. uncertainty Zeeman shift AC Stark shift: Measure for various powers Extrapolate to zero power 2 3 S 1 M J =+1 M J = 0 M J =-1 M J =+1 M J =0 M J =-1 f R F Energy 0 B-field

AC Stark shift 4 He Accounted for: –Recoil shift (20.1 kHz) –Mean field –Zeeman shift (41) MHz Relative uncertainty: 3 x Preliminary result

Quantum statistical effect 4 He* BEC occupy ground state fluctuating atom number

Quantum statistical effect 4 He* BEC occupy ground state fluctuating atom number 3 He*, low power atoms fill up the trap constant atom number

Quantum statistical effect 4 He* BEC occupy ground state fluctuating atom number 3 He*, low power atoms fill up the trap constant atom number 3 He*, P > 300 mW Trap depth large enough to accommodate full thermal distribution Measured AC-Stark shift curve non-linear Power (mW) 0.2 Fit Temperature (uK)

AC Stark shift 3 He Accounted for: –Recoil shift (26.7 kHz) –Mean field –Zeeman shift (14) MHz Relative uncertainty: 8 x Preliminary result

Results Drake Pachucki Indirect expt. Our result f – (MHz) Helium 4 transition frequency

Results Drake Pachucki Indirect expt. Our result f – (MHz) Helium 4 transition frequency f – (MHz) Drake Pachucki Our result Indirect expt. Helium 3 transition frequency

Results Drake Pachucki Indirect expt. Our result f – (MHz) Helium 4 transition frequency f – (MHz) Drake Pachucki Our result Indirect expt. Helium 3 transition frequency f – 8034 (MHz) Drake Pachucki Our result Isotope shift In isotope shift calculations many terms cancel, reducing the theoretical uncertainty Theoretical uncertainty dominated by nuclear charge radii determined from electron- nucleus scattering experiments

Summary First time: spectroscopy on ultracold trapped 4 He* and 3 He* direct measurement between triplet and singlet states in He observation of the 1557nm 2 3 S → 2 1 S transition Observed quantum statistical effects in the dipole trap