Bellwork: Graph each line: 1. 3x – y = 6 2. Y = -1/2 x + 3 Y = -2 If f(x) = 3x2 – 9, find each. 4. f(-2) 5. f(3) 6. f(4a) Algebra II
Evaluating, Graphing, and Writing Piecewise Functions Algebra II
Piecewise Functions A combination of equations each corresponding to a given domain. Algebra II
Example 1 f(x)= { 2x2 – 2 if x < 1 x + 4 if x ≥ 1 Evaluate each. = (3) + 4 = 7 = 2(-4)2 – 2 = 2(16) – 2 = 30 = (1) + 4 = 5 Algebra II
Example 2 x − 1 if x ≤ -1 f(x)= { (x − 3)2 if x > -1 Evaluate each. = (-3) − 1 = -4 = (-1) − 1 = -2 = ((2) – 3)2 = (-1)2 = 1 Algebra II
Example 3 g(x)= { 3x – 2 if x < -3 4 if -3 ≤ x < 5 Evaluate each. 1. g(5) 2. g(-2) 3. g(-8) = 2(5)2 – 3 = 2(25) – 3 = 47 = 4 = 3(-8) – 2 = -24 – 2 = -26 Algebra II
Find each. f(½) f(2) f(-5) -3/2 9 -10 4. g(½) 5. g(0) 6. g(-1) 3 2 2x if x < -2 x – 2 if -2 ≤ x < 2 2x2 + 1 if x ≥ 2 f(x)= { x + 3 if x < ½ 2x – 1 if x ≥ ½ g(x)= { Evaluate each piecewise function for the given values. f(½) f(2) f(-5) -3/2 9 -10 4. g(½) 5. g(0) 6. g(-1) 3 2 Algebra II
Graphing: Example 1 f(x)= { x – 3 if x < 2 -½x + 1 if x ≥ 2 Graph the piecewise function: f(x)= { x – 3 if x < 2 -½x + 1 if x ≥ 2 x – 3 if x < 2 -½x + 1 if x ≥ 2 Algebra II
Graphing: Example 2 f(x)= { 3x + 1 if x ≤ -1 x + 2 if x > -1 Graph the piecewise function: f(x)= { 3x + 1 if x ≤ -1 x + 2 if x > -1 3x + 1 if x ≤ -1 x + 2 if x > -1 Algebra II
Graphing: Example 3 f(x)= { -2x if x < -2 ⅔x – 1 if x ≥ -2 Graph the piecewise function: f(x)= { -2x if x < -2 ⅔x – 1 if x ≥ -2 -2x if x < -2 ⅔x – 1 if x ≥ -2 Algebra II
Graphing: Example 4 f(x)= { -3 if x < 0 -x – 1 if x ≥ 0 Graph the piecewise function: f(x)= { -3 if x < 0 -x – 1 if x ≥ 0 -3 if x < 0 -x – 1 if x ≥ 0 Algebra II
Graphing: Example 5 f(x)= { Graph the piecewise function: 2x – 1 if x < -2 3 if -2 ≤ x ≤ 2 -¼x if x > 2 2x – 1 if x < -2 3 if -2 ≤ x ≤ 2 -¼x if x > 2 Algebra II
Find each. Graph: Evaluate each given the piece-wise function: f(x)={ 1/3x + 1 if x < -3 3x if -3 ≤ x < 2 2 if x > 2 4x2 + 5 if x < -3 3x – 2 if -3 ≤ x < 5 –3 if x ≥ 5 f(x)= { Algebra II
Writing a Piecewise Function Write the equation for each piece of the function Write the domain for each piece of the function use inequality notation to represent the domain in each piece Algebra II
function that is graphed. Example 1 Write the piecewise function that is graphed. (3 – 1) = -2 = -2 (-3 + 2) 1 y – 1 = -2(x + 2) y = 2x – 3 (-5 + 4) = -1 (2 + 1) 3 y + 4 = -⅓(x + 1) y = -⅓x – 13/3 f(x) = { 2x – 3 if x ≤ -1 -⅓x – 13/3 if x > -1 Algebra II
function that is graphed. Example 2 Write the piecewise function that is graphed. (6 – 5) = 1 (1 + 4) 5 y – 6 = ⅕(x – 1) y = ⅕x + 29/5 (0 + 1) = 1 = 1 (3 – 2) 1 y – 0 = 1(x + 3) y = x – 3 f(x) = { ⅕x + 29/5 if x < 1 x – 3 if x ≥ 1 Algebra II
function that is graphed. Example 3 Write the piecewise function that is graphed. (2 + 1) = 3 = -1 (-3 - 0) -3 y + 1 = -1(x + 0) y = -x – 1 (2 – 0) = 2 = 2 (1 – 0) 1 y – 0 = 2(x + 0) y = 2x f(x) = { -x – 1 if x ≤ 0 2x if x > 0 Algebra II
function that is graphed. Example 4 Write the piecewise function that is graphed. (5 – 3) = 2 = 1 (-3 + 5) 2 y – 5 = 1(x + 3) y = x + 8 Slope is 0 horizontal line (1 – 0) = 1 = -½ (1 – 3) -2 y = 3 y – 0 = -½(x – 3) y = -½x + 3/2 f(x) = { x + 8 if x < -3 3 if -3 ≤ x < 1 -½x + 3/2 if x ≥ 1 Algebra II
Closure: Graph the piece-wise function: Write a piece-wise function for this graph: f(x) = { x + 8 if x < -3 3 if -3 ≤ x < 1 -½x + 3/2 if x ≥ 1 Algebra II