Karsten M. Heeger Les Houches, June 19, 2001 Sudbury Neutrino Observatory Results from the Sudbury Neutrino Observatory Karsten M. Heeger For the SNO Collaboration.

Slides:



Advertisements
Similar presentations
Solar Neutrino Physics from SNO Aksel Hallin SNOLAB Opening May 14, 2012.
Advertisements

Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
DMSAG 14/8/06 Mark Boulay Towards Dark Matter with DEAP at SNOLAB Mark Boulay Canada Research Chair in Particle Astrophysics Queen’s University DEAP-1:
Super-Kamiokande Introduction Contained events and upward muons Updated results Oscillation analysis with a 3D flux Multi-ring events  0 /  ratio 3 decay.
Results and Future Challenges of the Sudbury Neutrino Observatory Neil McCauley University of Pennsylvania WIN 2005 : Delphi, Greece. 7 th June 2005.
Evidence of Neutrino Oscillation from SNO Chun Shing Jason Pun Department of Physics The University of Hong Kong Presented at the HKU Neutrino Workshop.
Off-axis Simulations Peter Litchfield, Minnesota  What has been simulated?  Will the experiment work?  Can we choose a technology based on simulations?
M. Kowalski Search for Neutrino-Induced Cascades in AMANDA II Marek Kowalski DESY-Zeuthen Workshop on Ultra High Energy Neutrino Telescopes Chiba,
A Search for Point Sources of High Energy Neutrinos with AMANDA-B10 Scott Young, for the AMANDA collaboration UC-Irvine PhD Thesis:
Queen’s University, Kingston, ON, Canada
21-25 January 2002 WIN 2002 Colin Okada, LBNL for the SNO Collaboration What Else Can SNO Do? Muons and Atmospheric Neutrinos Supernovae Anti-Neutrinos.
Energy Reconstruction Algorithms for the ANTARES Neutrino Telescope J.D. Zornoza 1, A. Romeyer 2, R. Bruijn 3 on Behalf of the ANTARES Collaboration 1.
8/5/2002Ulrich Heintz - Quarknet neutrino puzzles Ulrich Heintz Boston University
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
Neutrino Physics - Lecture 4 Steve Elliott LANL Staff Member UNM Adjunct Professor ,
Results and Prospects for SNO
Atmospheric Neutrino Oscillations in Soudan 2
1 Super-Kamiokande atmospheric neutrinos Results from SK-I atmospheric neutrino analysis including treatment of systematic errors Sensitivity study based.
手 手 羅 S N O 手 持 火 炬 的 火 炬 的 火 炬 的 手 手 手 俄 羅 羅 R E L O A D E D 手 持 火 炬 的 Results fromthe Salt Phase of the SNO Experiment Results from the Salt Phase of.
Status of the Sudbury Neutrino Observatory (SNO) Alan Poon for the SNO Collaboration Institute for Nuclear and Particle Astrophysics Lawrence Berkeley.
NDM03, June Mark Boulay for SNO Mark Boulay For the SNO Collaboration Los Alamos National Laboratory, Los Alamos NM, 87544, USA Present Status and.
Coincidence analysis in ANTARES: Potassium-40 and muons  Brief overview of ANTARES experiment  Potassium-40 calibration technique  Adjacent floor coincidences.
5/1/20110 SciBooNE and MiniBooNE Kendall Mahn TRIUMF For the SciBooNE and MiniBooNE collaborations A search for   disappearance with:
SNO II: Salt Strikes Back Joseph A. Formaggio University of Washington NuFACT’03 Update from the Sudbury Neutrino Observatory.
Latest SNO Results from Salt-Phase Data and Current NCD-Phase Status Melin Huang ● Introduction ● Results of Salt Phase (Phase II) ● Status of NCD Phase.
Solar neutrino measurement at Super Kamiokande ICHEP'04 ICRR K.Ishihara for SK collaboration Super Kamiokande detector Result from SK-I Status of SK-II.
14/02/2007 Paolo Walter Cattaneo 1 1.Trigger analysis 2.Muon rate 3.Q distribution 4.Baseline 5.Pulse shape 6.Z measurement 7.Att measurement OUTLINE.
P. Wittich 1 Peter Wittich University of PA March 1, 2002 From Solar Neutrinos to B Physics: Flavor Oscillations at SNO and CDF.
Results from Sudbury Neutrino Observatory Huaizhang Deng University of Pennsylvania.
The Sudbury Neutrino Observatory First Results and Implications Nick Jelley (University of Oxford) for the SNO Collaboration October 18th, 2001 CERN.
Methods and problems in low energy neutrino experiments (solar, reactors, geo-) I G. Ranucci ISAPP 2011 International School on Astroparticle physics THE.
GADZOOKS! project at Super-Kamiokande M.Ikeda (Kamioka ICRR, U.of Tokyo) for Super-K collaboration 1 Contents GADZOOKS! project Supernova.
SNO and the new SNOLAB SNO: Heavy Water Phase Complete Status of SNOLAB Future experiments at SNOLAB: (Dark Matter, Double beta, Solar, geo-, supernova.
Measuring the Neutral Current Event Rate in SNO Using 3 He(n,p)t All Neutron Backgrounds (Estimates) Photodisintegration Background U in D 2 O(20.0 fg/g)160.
NESTOR SIMULATION TOOLS AND METHODS Antonis Leisos Hellenic Open University Vlvnt Workhop.
LoNu Workshop R. B. Vogelaar October 14, 2006 Extraordinary Neutrino Beam Free of Charge For NEUTRINO PHYSICS: WELL DEFINED HIGHEST FLUX (~10 11 cm -2.
Solar neutrino results from Super-Kamiokande Satoru Yamada for the Super-Kamiokande collaboration Institute of cosmic ray research, University of Tokyo.
1 IDM2004 Edinburgh, 9 september 2004 Helenia Menghetti Bologna University and INFN Study of the muon-induced neutron background with the LVD detector.
1 水质契仑科夫探测器中的中子识别 张海兵 清华大学 , 南京 First Study of Neutron Tagging with a Water Cherenkov Detector.
New Results from the Salt Phase of SNO Kathryn Miknaitis Center for Experimental Nuclear Physics and Astrophysics, Univ. of Washington For the Sudbury.
CEA DSM Irfu Reconstruction and analysis of ANTARES 5 line data Niccolò Cottini on behalf of the ANTARES Collaboration XX th Rencontres de Blois 21 / 05.
Study of neutrino oscillations with ANTARES J. Brunner.
Study of neutrino oscillations with ANTARES J. Brunner.
The Sudbury Neutrino Observatory. Neil McCauley University of Pennsylvania NuFact th July 2004.
Data Processing for the Sudbury Neutrino Observatory Aksel Hallin Queen’s, October 2006.
Results from RENO Soo-Bong Kim (KNRC, Seoul National University) “17 th Lomosonov Conference on Elementary Particle Physics” Moscow. Russia, Aug ,
Karsten Heeger Beijing, January 18, 2003 Design Considerations for a  13 Reactor Neutrino Experiment with Multiple Detectors Karsten M. Heeger Lawrence.
J. Dunmore, University of Oxford NDM03, 10 June 2003 Event Isotropy in the Salt Phase of SNO Jessica Dunmore University of Oxford NDM03, Nara - 10 June.
Solar Neutrino Observations at the Sudbury Neutrino Observatory (SNO) Alan Poon † Institute for Nuclear and Particle Astrophysics Lawrence Berkeley National.
Neutrino Oscillations at Super-Kamiokande Soo-Bong Kim (Seoul National University)
00 Cooler CSB Direct or Extra Photons in d+d  0 Andrew Bacher for the CSB Cooler Collaboration ECT Trento, June 2005.
Medium baseline neutrino oscillation searches Andrew Bazarko, Princeton University Les Houches, 20 June 2001 LSND: MeVdecay at rest MeVdecay in flight.
April 26, McGrew 1 Goals of the Near Detector Complex at T2K Clark McGrew Stony Brook University Road Map The Requirements The Technique.
P Spring 2002 L18Richard Kass The Solar Neutrino Problem M&S Since 1968 R.Davis and collaborators have been measuring the cross section of:
Recent Results from RENO NUFACT2014 August. 25 to 30, 2014, Glasgow, Scotland, U.K. Hyunkwan Seo on behalf of the RENO Collaboration Seoul National University.
SNO Review & Comparisons NOW September 2004 Mark Chen Queen’s University & The Canadian Institute for Advanced Research.
Solar Neutrino Results from SNO
September 10, 2002M. Fechner1 Energy reconstruction in quasi elastic events unfolding physics and detector effects M. Fechner, Ecole Normale Supérieure.
5th June 2003, NuFact03 Kengo Nakamura1 Solar neutrino results, KamLAND & prospects Solar Neutrino History Solar.
News from the Sudbury Neutrino Observatory Simon JM Peeters July 2007 o SNO overview o Results phases I & II o hep neutrinos and DSNB o Update on the III.
Observation Gamma rays from neutral current quasi-elastic in the T2K experiment Huang Kunxian for half of T2K collaboration Mar. 24, Univ.
Double Chooz Experiment Status Jelena Maricic, Drexel University (for the Double Chooz Collaboration) September, 27 th, SNAC11.
First Results from Phase II of the Sudbury Neutrino Observatory Joshua R. Klein University of Texas at Austin  Solar Neutrinos  Review of Phase I Solar.
ICARUS T600: low energy electrons
Neutral Current Interactions in MINOS Alexandre Sousa, University of Oxford for the MINOS Collaboration Neutrino Events in MINOS Neutrino interactions.
Simulation for DayaBay Detectors
p0 life time analysis: general method, updates and preliminary result
Sudbury Neutrino Observatory
Davide Franco for the Borexino Collaboration Milano University & INFN
Some Nuclear Physics with Solar Neutrinos
Presentation transcript:

Karsten M. Heeger Les Houches, June 19, 2001 Sudbury Neutrino Observatory Results from the Sudbury Neutrino Observatory Karsten M. Heeger For the SNO Collaboration CENPA, Seattle

Karsten M. Heeger Les Houches, June 19, 2001 Sudbury Neutrino Observatory  Design and Physics Objectives  Detector Operations  Calibration and Detector Response  Data Analysis  First Results

Karsten M. Heeger Les Houches, June 19, 2001 SNO Collaboration J. Boger, R. L Hahn, J.K. Rowley, M. Yeh Brookhaven National Laboratory I. Blevis, F. Dalnoki-Veress, W. Davidson, J. Farine, D.R. Grant, C. K. Hargrove, I. Levine, K. McFarlane, C. Mifflin, T. Noble, V.M. Novikov, M. O'Neill, M. Shatkay, D. Sinclair, N. Starinsky Carleton University J. Bigu, J.H.M. Cowan, E. D. Hallman, R.U. Haq, J. Hewett, J.G. Hykawy, G. Jonkmans, A. Roberge, E. Saettler, M.H. Schwendener, H. Seifert, R. Tafirout, C. J. Virtue. Laurentian University Y. D. Chan, X. Chen, M. C. P. Isaac, K. T. Lesko, A. D. Marino, E. B. Norman, C. E. Okada, A. W. P. Poon, A. R. Smith, A. Schülke, R. G. Stokstad. Lawrence Berkeley National Laboratory T. J. Bowles, S. J. Brice, M. Dragowsky, M.M. Fowler, A. Goldschmidt, A. Hamer, A. Hime, K. Kirch, G.G. Miller, J.B. Wilhelmy, J.M. Wouters. Los Alamos National Laboratory E. Bonvin, M.G. Boulay, M. Chen, F.A. Duncan, E.D. Earle, H.C. Evans, G.T. Ewan, R.J. Ford, A.L. Hallin, P.J. Harvey, J.D. Hepburn, C. Jillings, H.W. Lee, J.R. Leslie, H.B. Mak, A.B. McDonald, W. McLatchie, B. Moffat, B.C. Robertson, P. Skensved, B. Sur. Queen's University S. Gil, J. Heise, R. Helmer, R.J. Komar, T. Kutter, C.W. Nally, H.S. Ng,Y. Tserkovnyak, C.E. Waltham. University of British Columbia T.C. Andersen, M.C. Chon, P. Jagam, J. Law, I.T. Lawson, R. W. Ollerhead, J. J. Simpson, N. Tagg, J.X. Wang University of Guelph J.C. Barton, S.Biller, R. Black, R. Boardman, M. Bowler, J. Cameron, B. Cleveland, X. Dai, G. Doucas, J. Dunmore, H. Fergani, A.P. Ferraris, K.Frame, H. Heron, C. Howard, N.A. Jelley, A.B. Knox, M. Lay, W. Locke, J. Lyon, S. Majerus, N. McCaulay, G. McGregor, M. Moorhead, M. Omori, N.W. Tanner, R. Taplin, M. Thorman, P. Thornewell. P.T. Trent, D.L.Wark, N. West, J. Wilson University of Oxford E. W. Beier, D. F. Cowen, E. D. Frank, W. Frati, W.J. Heintzelman, P.T. Keener, J. R. Klein, C.C.M. Kyba, D. S. McDonald, M.S.Neubauer, F.M. Newcomer, S. Oser, V. Rusu, R. Van Berg, R.G. Van de Water, P. Wittich. University of Pennsylvania Q.R. Ahmad, M.C. Browne, T.V. Bullard, P.J. Doe, C.A. Duba, S.R. Elliott, R. Fardon, J.V. Germani, A.A. Hamian, R. Hazama, K.M. Heeger, M. Howe, R. Meijer Drees, J.L. Orrell, R.G.H. Robertson, K. Schaffer, M.W.E. Smith, T.D. Steiger, J.F. Wilkerson. University of Washington R.G. Allen, G. Buhler, H.H. Chen* University of California, Irvine

Karsten M. Heeger Les Houches, June 19, 2001 Sudbury Neutrino Observatory 2092 m to Surface (6010 m w.e.) 17.8 m Diameter Support Structure for cm PMTs ~55% coverage within 7 m 1000 Tonnes D 2 O 12 m Diameter Acrylic Vessel 1700 Tonnes Inner Shielding H 2 O 5300 Tonnes Outer Shield H 2 O Urylon Liner and Radon Seal

Karsten M. Heeger Les Houches, June 19, 2001 Neutrino Detection in SNO Neutrino Interactions in D 2 O and H 2 O and their Flavor Sensitivity Charged-Current (CC) e only e +d  e - +p+pMeasurement of energy spectrum E thresh = 1.4 MeV Elastic Scattering (ES) x, but enhanced for e x +e -  x +e - Strong directional sensitivity Neutral-Current (NC) x x +d  x +n+p Measures total 8 B flux from Sun E thresh = 2.2 MeV

Karsten M. Heeger Les Houches, June 19, 2001 SNO Physics Program Solar Neutrinos  Search for flavor change CC/ES, CC/NC  8 B Total Flux (test of solar models)  Spectral distortions  Time Dependences diurnal annual solar cycle  Measurement of hep flux Supernova watch, relic SN neutrinos Antineutrinos Atmospheric Neutrinos

Karsten M. Heeger Les Houches, June 19, 2001 SNO Run Sequence I. Pure D 2 OCC, ES some NC n+d  t+ ... (E  = 6.25 MeV,  n ~24%) II. D 2 O+NaClCC, ES (added salt) enhanced NC n+ 35 Cl  36 Cl+ ∑  (E ∑  = 8.6 MeV,  n ~45% above threshold) III. D 2 O+NCDsConcurrent CC, NC, ES ( 3 He proportional counters) n+ 3 He  p+t  event by event separation (  n ~37%)

Karsten M. Heeger Les Houches, June 19, 2001 SNO Phase II - Addition of Salt SNO Phase II: D 2 O+NaCL Runtime about 8 months Enhances neutron capture efficiency:  n ~83% (~45% above threshold) May 28 - June 5, 2001 Salt introduced at bottom of detector Addition of NaCL completed Event Rate vs z Position During Addition of Salt

Karsten M. Heeger Les Houches, June 19, 2001 SNO Phase II - Physics with Salt NC Salt (BP98) Enhanced NC sensitivity  n ~45% above threshold Systematic check of energy scale E ∑  = 8.6 MeV NC and CC separation by event isotropy

Karsten M. Heeger Les Houches, June 19, 2001 Preparations for Phase III - Neutral Current Detectors NCD Array NC Detection:n+ 3 He  p+t Total Length: 775 m Counters: 292 (300) Vertical Strings: 96 n capture efficiency:  n ~45% Neutron Background Estimates from Radioassay uniform+near vessel: <4.4% SSM Status of NCD Project First deployment of NCD into D 2 O Sep 2000 Counter construction complete April 2001 Electronics Commissioning Summer 2001 DAQ partially complete Analysis of cooldown data Development of pulse shape analysis techniques Schedule Pre-deployment welding: Winter 2001 Deployment of NCD array: Summer 2002

Karsten M. Heeger Les Houches, June 19, 2001 Calibration and Detector Response Calibration Techniques Electronicselectronic pulsers, pulsed light sources Optical Response pulsed laser at =337, 365, 386, 420, 500, and 620 nm, ~2 ns resolution Energy response 16 N 6.13 MeV , tagged p,t19.8 MeV  neutrons6.25 MeV  8 Li  spectrum13 MeV endpoint 8 B  spectrum15 MeV endpoint Calibration Issues Photon Generation, transport, and detection different media: D 2 O, acrylic, H 2 O, PMT attenuation, reflection, scattering Detector geometry Detector status and conditions

Karsten M. Heeger Les Houches, June 19, 2001 Calibration Systems Source Deployment In two planes in D 2 O One line in H 2 O (so far) Positioning accuracy: ± 2-5 cm H2OH2O D2OD2O

Karsten M. Heeger Les Houches, June 19, 2001 Optical Response - Timing Residuals Source at Center Source at z=500 cm Timing Residuals Difference in time between hit and direct flight time from vertex Event Energy Estimators I. Prompt light with position and direction correction II. Total light (Nhit) without position and direction correction

Karsten M. Heeger Les Houches, June 19, 2001 Time Since Last Hit Dependence Effect Variation in ADC pedestal with time since last hit (TSLH) Variation in ADC slope with time since last hit (TSLH) Observation Timing residuals depend on data rate Software Solution Calibrated out in reconstruction of neutrino data Effect on Reconstruction

Karsten M. Heeger Les Houches, June 19, 2001 Event Reconstruction Calibration Sources in D 2 O 16 N  ’s and 8 Li  ’s in H 2 O 16 N  ’s AV Neck Vertex resolution: ~ 16 cm

Karsten M. Heeger Les Houches, June 19, 2001 Angular Resolution Error in reconstructed event direction: Resolution function: true angular resolution + multiple scattering of e - Angular resolution: 26.7 º  small effect on flux determination

Karsten M. Heeger Les Houches, June 19, 2001 Optical Response: D 2 O and H 2 O Attenuation D 2 O Attenuation Length: ~ 100 m

Karsten M. Heeger Les Houches, June 19, 2001 SNO Energy Response - Absolute Energy Scale established with triggered 16 N (E  = 6.13 MeV) tested against 8 Li, 252 Cf, and (p,t) source Sources at Center 8 Li 13 MeV endpoint (n,  ) on 11 B (p,t) E  =19.8 MeV from 3 H(p,  ) 4 He 252 Cf E  = 6.25 MeV from n capture

Karsten M. Heeger Les Houches, June 19, 2001 SNO Energy Response - Spatial Dependence various 16 N positions inside D 2 O Monte-Carlo prediction tested against extended distribution of 6.25-MeV  from 252 Cf neutrons  more difficult to analyze passive neutron source  tagged neutron source under development

Karsten M. Heeger Les Houches, June 19, 2001 Temporal Dependence of Energy Scale use center 16 N high voltage runs and compare data and Monte-Carlo actual detector configurations are simulated: noise rate, working tubes  energy drift: 2.2 ± 0.2% year  cause of drift is under investigation

Karsten M. Heeger Les Houches, June 19, 2001 Data Taking and Live Time Nov 2, 1999Jan 15, live days neutrino runtime

Karsten M. Heeger Les Houches, June 19, 2001 Detector Performance Trigger TypeHardware Threshold Rate (Hz) Pulsed TriggerZero Bias5 100 ns Coincidence16 PMTs8 20ns Coincidence16 PMTS0.02 Energy sum~150 p.e.4 Prescaled (1:1000)11 PMTs0.1 Trigger Rates and Thresholds in 2001 Instantaneous Trigger Rate ~ Hz Data Trigger Rate~ 6-8 Hz Hardware Threshold ~ 2 MeV Channel threshold: ~ 0.25 photo-electrons Multiplicity trigger: 18 Nhit within 93 ns Trigger efficiency:100% efficiency by 25 Nhit (~3 MeV)

Karsten M. Heeger Les Houches, June 19, 2001 Solar Neutrino Data Analysis Run Selection Data Division Calibration Monte-Carlo Simulations Instrumental Background Removal Reconstruction I Instrumental Background Removal Reconstruction II High Level Cuts Energy Estimator (prompt light) Small Fiducial Volume High Threshold Background Estimates Signal Extraction Technique Energy Estimator (total light) Variable Fiducial Volume Lower Threshold Fit to the Backgrounds Signal Extraction Technique

Karsten M. Heeger Les Houches, June 19, 2001 Data Flow & Instrumental Background Cuts Data Flow Analysis StepEvents Total Event Triggers355,320,964 Neutrino Data Triggers143,756,178 Nhit  306,372,899 Instrumental Background 1,842,491 Muon Followers1,809,979 High Level Cuts956,535 Fiducial Volume Cut18,783 Threshold Cut,T eff  6.75 MeV1169 Total Events In Final Data Set 1169 High Level Cuts: Reconstruction figures of merit In-time light Event isotropy (  ij )

Karsten M. Heeger Les Houches, June 19, 2001 Removal of Instrumental Background Instrumental removal: Two independent methods Signal loss:0.4±0.3%within R fit ≤550 cm from 16 N, 8 Li, and the laser ball Contamination:limits from bifurcated analyses and hand-scanning Overlay of Cleaned Nhit spectra

Karsten M. Heeger Les Houches, June 19, 2001 Instrumental Backgrounds Neck Tubes Fired Electronic Pickup

Karsten M. Heeger Les Houches, June 19, 2001 High Level Data Cuts Reconstruction Figures of Merit In-Time Light Fraction  uses detailed PMT time distributions Event Isotropy  Average angle between hit PMTs Event Isotropy Tests hypothesis of single-particle origin for each event Discriminates between simple Cerenkov electron and multiple vertices From triggered 16 N, 8 Li, and bifurcated analyses Volume-weighted signal loss: /-0.6 % Residual instrumental contamination: < 0.2%

Karsten M. Heeger Les Houches, June 19, 2001 Reconstructed Neutrino Candidate Events Characteristic R 3 Distribution Fiducial Volume R≤550 cm chosen to minimize backgrounds Variable FV analysis fits backgrounds outside the AV Fit to the AV Position

Karsten M. Heeger Les Houches, June 19, 2001 Reconstructed Neutrino Candidate Events Characteristic Solar Angle Distribution Neutrino Candidate Events R fit  550cm Nhit≥65 High Level Cuts Fit based on Monte-Carlo distributions Note: Can already extract with larger uncertainty CC and ES rate from fits to cos(  Sun ) distribution alone

Karsten M. Heeger Les Houches, June 19, 2001 Reconstructed Neutrino Candidate Events Characteristic Energy Spectrum Event Energy Estimators T eff or Nhit  both are calibrated with 16 N  volume weighted mean response: ~ 9 Nhit/MeV Effective Kinetic Energy T eff effective kinetic energy, Teff, determined for each event in D 2 O T eff corrected for time variable phenomena + position + direction

Karsten M. Heeger Les Houches, June 19, 2001 Principal Physics Backgrounds Internal D 2 O Background 238 U, 232 Th Acrylic Vessel 238 U, 232 Th H 2 O 238 U, 232 Th PMT  -  High Energy  Analysis of Backgrounds I. Estimate limits in background free region R fit ≤550 cm II. Fit to backgrounds in variable fiducial volumes

Karsten M. Heeger Les Houches, June 19, 2001 D 2 O Backgrounds Target Level Equivalent of 7% SSM neutrons Measurement Techniques Radiochemical assays In-situ Cerenkov measures Status  at or below target level

Karsten M. Heeger Les Houches, June 19, 2001 H 2 O Backgrounds Target Equivalent of 7% SSM neutrons Measurement Technique Radiochemical assay Encapsulated sources High radon runs Status  near or below target levels

Karsten M. Heeger Les Houches, June 19, 2001 Acrylic Vessel Backgrounds Calibration Techniques direct counting and NAA encapsulated U, Th sources direct observation: Cerenkov light AV Activity Activities assayed to be < 10% of target level ~ 0.2 ppt U/Th AV Construction Every piece sampled and tested Sample bonds tested  AV Blob: ~ 9 +20/-5 ± 3  g ‘Th’

Karsten M. Heeger Les Houches, June 19, 2001 PMT  -  Monte-Carlo 16 N Data Characteristics Strong Nhit dependence but small tails into Cerenkov signals Determination  Direct counting of materials, Monte-Carlo simulations  Hot encapsulated U and Th Sources (bkgd < 0.1% within D 2 O)  16 N  ’s from calibration source AV FV

Karsten M. Heeger Les Houches, June 19, 2001 External  -Ray Background Outward going Inward going u.r Determination  empirical estimates from cavity measures  direct observation  16 N calibration  ’s (bkgd < 0.8% in data set) R3R3 Outward Inward Origin from PMT’s, rock wall AV

Karsten M. Heeger Les Houches, June 19, 2001 Experimental Systematic Errors on Fluxes Vertex Shift  3.1  3.3 Vertex Resolution  0.7  0.4 Angular Resolution  0.5  2.2 Live Time  0.1  0.1 Trigger Efficiency Cut Acceptance +0.7/ /-0.6 Experimental Uncertainty +7.0/ /-5.7 Cross Section Error Source CC Error(%)ES Error (%) Energy Scale +6.1/ /-3.5 Energy Resolution  0.5  0.3 Energy Scale Non-Linearity  0.5  0.4 Residual Backgrounds (R fit ≤550 cm) Instrumental Background  /+0.0 High Energy  ’s -0.8/ /+0.0 Low Energy Background -0.2/ /+0.0

Karsten M. Heeger Les Houches, June 19, 2001 Signal Extraction Maximum-Likelihood Fit to Characteristic Distributions R 3 cos(  Sun ) Neutron Energy Response Energy Estimators T eff or Nhit Fiducial Volume R fit ≤550 cm or variable FV R ≤650 cm ≤ 550cm Variable FV Data MC

Karsten M. Heeger Les Houches, June 19, 2001 First Solar Neutrino Results From SNO Energy Spectrum T eff ≥6.75 MeV and R fit ≤550 cm derived from fit without constraint on 8 B shape Solar Angle Distribution T eff ≥6.75 MeV and R fit ≤550 cm CC Spectrum Normalized to Predicted 8 B Spectrum T eff ≥6.75 MeV and R fit ≤550 cm With correlated systematic errors

Karsten M. Heeger Les Houches, June 19, 2001 Neutrino Fluxes Total 8 B Flux from the Sun  SNO ( 8 B) = 5.44 ± 0.99 x10 6 cm -2 s -1  SSM ( 8 B) = /-0.82 x10 6 cm -2 s -1 (BP2001)  Total flux in good agreement, CC is only component of total 8 B flux 241-day Data from SNO  CC SNO ( 8 B) = 1.75 ± 0.07 (stat.) +0.12/-0.11 (sys.) x10 6 cm -2 s -1  ES SNO ( 8 B) = 2.39 ± 0.34 (stat.) +0.16/-0.14 (sys.) x10 6 cm -2 s -1  assuming 8 B spectral shape, T eff < 6.75 MeV  radiative corrections are not applied yet, will only decrease CC flux CC Flux Relative to BP2001 R CC ( 8 B) = ± 0.029

Karsten M. Heeger Les Houches, June 19, 2001 CC/ES Ratio ES SNO and ES SK  ES SNO ( 8 B) = 2.39 ± 0.34 (stat.) +0.16/-0.14 (sys.) x10 6 cm -2 s -1  ES SK ( 8 B) = 2.32 ± 0.03 (stat.) +0.08/-0.07 (sys.) x10 6 cm -2 s -1  good agreement CC SNO /ES SK  CC SNO ( 8 B) = 1.75 ± 0.07 (stat.) +0.12/-0.11 (sys.) ± 0.05 (theor.) x10 6 cm -2 s -1  ES SK ( 8 B) = 2.32 ± 0.03 (stat.) +0.08/-0.07 (sys.) x10 6 cm -2 s -1   ES SK ( 8 B) -  CC SNO ( 8 B) = 0.57 ± 0.17  3.3   Probability of not being a downward fluctuation: 99.96% *S. Fukuda, et al., hep-ex/

Karsten M. Heeger Les Houches, June 19, 2001 Neutrino Flavor Composition of 8 B Flux Flavor content analysis of 8 B solar neutrino flux from:  SK ES,  SNO CC  CC =  e  ES =  e +   ,   SNO CC = 1.75 ± 0.13  SK ES = 2.32 ± 0.09 Total active neutrino flux:  x =  e +  ,  =  CC + (  ES -  CC )/   Evidence for oscillations: e    e = 1.75 ± 0.13  ,  = 3.69 ± 1.13

Karsten M. Heeger Les Houches, June 19, 2001 What About Sterile Neutrinos? Comparing the Response of SNO and SK Ref: Fogli, Lisi, et al, hep-ph/ , Villante et al., hep-ph/  normalized rates over paired spectral regions are linearly related SK Flux SNO Flux > 8.5 MeV > 6.75 MeV SK 8B (ES, >8.5) - SNO 8B (CC, >6.75) = 0.54 ± 0.17  oscillations to sterile excluded at 3.1 

Karsten M. Heeger Les Houches, June 19, 2001 Neutrino Oscillation Scenarios To Sterile NeutrinosTo Active Neutrinos data exclude sterile neutrinos and “Just So 2” parameter space oscillations to active species

Karsten M. Heeger Les Houches, June 19, 2001 Cosmological Implications These results plus previous analyses suggest: (  m e  ) 2 < eV 2 or (  m e  ) 2 < eV 2 Limits on e mass give: m e < 2.8 eV Assuming the hypothesis of   oscillations in atmospheric neutrinos: (  m  ) 2  3  eV 2   neutrino masses: 0.05 <  m < 8.4 eV  mass fraction of neutrinos in the universe: <  < 0.18 e 

Karsten M. Heeger Les Houches, June 19, 2001 Conclusions CC rate is low compared to the SSM prediction, and to the ES rates as measured by SNO and SK First direct indication of solar neutrinos of type other than e First measurement of the total flux of 8 B neutrinos. It agrees well with SSM predictions:  total ( 8 B) = 5.44 ± 0.99 x10 6 cm -2 s -1 Data exclude the “Just-So 2 ” and sterile neutrino parameter spaces ∆m 2 ( e  ,  ) < eV 2  0.05 <  m < 8.4 eV Cosmological limit on neutrino mass: <  < 0.18 Phase I of SNO experiment complete e 

Karsten M. Heeger Les Houches, June 19, 2001 First Results

Karsten M. Heeger Les Houches, June 19, 2001 Additional Slides

Karsten M. Heeger Les Houches, June 19, 2001 Muon Analysis

Karsten M. Heeger Les Houches, June 19, 2001 Neutrino Event

Karsten M. Heeger Les Houches, June 19, 2001 Oscillation Scenarios and SNO SNO Ratio of measured 8 B flux relative to BP2000: R CC SNO =0.346  (stat.)  (sys.)  (theor.) R ES SNO =  (stat.)  (sys.)  (theor.) From Bahcall, Krastev, and Smirnov hep-ph/  Neutrino oscillation models with maximal mixing are not compatible  Data exclude “Just So 2 ” parameters at ∆m 2 =6x eV 2