1 Hierarchical Part-Based Human Body Pose Estimation * Ramanan Navaratnam * Arasanathan Thayananthan Prof. Phil Torr * Prof. Roberto Cipolla * University Of Cambridge Oxford Brookes University
2Introduction Input
3Introduction Output
4Overview 1.Motivation 2.Hierarchical parts 3.Template search 4.Pose estimation in a single frame 5.Temporal smoothing 6.Summary & Future work
5Overview 1.Problem motivation ??? 2.Hierarchical parts 3.Template search 4.Pose estimation in a single frame 5.Temporal smoothing 6.Summary & Future work
6Overview 1.Problem motivation ??? 2.Hierarchical parts 3.Template search 4.Pose estimation in a single frame 5.Temporal smoothing 6.Summary & Future work
7Overview 1.Problem motivation ??? 2.Hierarchical parts 3.Template search 4.Pose estimation in a single frame 5.Temporal smoothing 6.Summary & Future work
8Motivation Real-time Object Detection for Smart Vehicles – D. M. Gavrila & V. Philomin (ICCV 1999) Filtering using a tree-based estimator – Stenger et.al. (ICCV 2003)
9Motivation Exponential increase of templates with dimensions Real-time Object Detection for Smart Vehicles – D. M. Gavrila & V. Philomin (ICCV 1999) Filtering using a tree-based estimator – Stenger et.al. (ICCV 2003)
10Motivation Pictorial Structures for Object Recognition – P. Felzenszwalb & D. Huttenlocher (IJCV 2005) Human upper body pose estimation in static images – M.W. Lee & I. Cohen (ECCV 2004)
11Motivation Part based approach Assembling parts together is complex Pictorial Structures for Object Recognition – P. Felzenszwalb & D. Huttenlocher (IJCV 2005) Human upper body pose estimation in static images – M.W. Lee & I. Cohen (ECCV 2004)
12Motivation Automatic Annotation of Everyday Movements – D. Ramanan & D. A. Forsyth (NIPS 2003) 3-D model-based tracking of humans in action:a multi-view approach – D. M. Gavrila & L. S. Davis (CVPR 1996)
13Motivation Automatic Annotation of Everyday Movements – D. Ramanan & D. A. Forsyth (NIPS 2003) 3-D model-based tracking of humans in action:a multi-view approach – D. M. Gavrila & L. S. Davis (CVPR 1996) State space decomposition
14 Hierarchical Parts
15 Hierarchical Parts
16 Hierarchical Parts
17 Hierarchical Parts
18 Hierarchical Parts Conditional prior p(x i /x parent(i) ) Spatial dimensions (translation) Joint Angles
19 Hierarchical Parts Head and torso Upper arm Lower Arm False Positive True Positive
20 Hierarchical Parts Detection Threshold = 0.81 Detections Head and torso 6156 Part
21 Hierarchical Parts Detection Threshold = 0.81 Detections Head and torso Part Lower arm
22 Template Search
23 Template Search
24 Template Search
25 Template Search Features Chamfer distance Appearance
26 Template Search Features Chamfer distance Appearance
27 Template Search Features Chamfer distance Appearance
28 Template Search Features Chamfer distance Appearance
29 Template Search Features Chamfer distance Appearance
30 Template Search Features Chamfer distance Appearance
31 Template Search Features Chamfer distance Appearance
32 Template Search Features Chamfer distance Appearance
33 Template Search Features Chamfer distance Appearance
34 Template Search Learning Appearance Match T pose based on edge likelihood only in initial frames Update 3D histograms in RGB space that approximates P(RGB/part) and P(RGB)
35 Pose Estimation in a Single Frame
36 Pose Estimation in a Single Frame
37 Pose Estimation in a Single Frame
38 Temporal Smoothing HMM
39 Temporal Smoothing HMM T = t
40 Temporal Smoothing HMM Viterbi back tracking
41 Temporal Smoothing Viterbi back tracking
42 Temporal Smoothing
43 Summary & Future work Summary Realtime process (unoptimized code at 1Hz, 2.4 Ghz IG RAM) 3D pose Automatic initialisation and recovery from failure
44 Summary & Future work Summary Realtime process (unoptimized code at 1Hz, 2.4 Ghz IG RAM) 3D pose Automatic initialisation and recovery from failure Future work Extend robustness to illumination changes Non-fronto-parallel poses Poses when arms are inside the body silhouette Simple gesture recognition by assigning semantics to regions of articulation space