1 Kommunikatsiooniteenuste arendus IRT0080 Loeng 10/2008 Avo Ots telekommunikatsiooni õppetool, TTÜ raadio- ja sidetehnika inst.

Slides:



Advertisements
Similar presentations
Ch 20. Internet Protocol (IP) Internetworking PHY and data link layers operate locally.
Advertisements

TCP/IP Protocol Suite 1 Chapter 27 Upon completion you will be able to: Next Generation: IPv6 and ICMPv6 Understand the shortcomings of IPv4 Know the IPv6.
CPSC Network Layer4-1 IP addresses: how to get one? Q: How does a host get IP address? r hard-coded by system admin in a file m Windows: control-panel->network->configuration-
TCOM 509 – Internet Protocols (TCP/IP) Lecture 06_b Subnetting,Supernetting, CIDR IPv6 Instructor: Dr. Li-Chuan Chen Date: 10/06/2003 Based in part upon.
PRIVATE NETWORK INTERCONNECTION (NAT AND VPN) & IPv6
Computer Networks20-1 Chapter 20. Network Layer: Internet Protocol 20.1 Internetworking 20.2 IPv IPv6.
IPv6. Major goals 1.support billions of hosts, even with inefficient address space allocation. 2.reduce the size of the routing tables. 3.simplify the.
Chapter 22 IPv6 (Based on material from Markus Hidell, KTH)
CS 457 – Lecture 16 Global Internet - BGP Spring 2012.
Network Layer IPv6 Slides were original prepared by Dr. Tatsuya Suda.
IP Version 6 (IPv6) Dr. Adil Yousif. Why IPv6?  Deficiency of IPv4  Address space exhaustion  New types of service  Integration  Multicast  Quality.
Network Layer4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
N/W Layer Addressing1 Instructor: Anirban Mahanti Office: ICT Class Location: ICT 121 Lectures: MWF 12:00 – 12:50 Notes.
Network Layer Overview and IP
Network Layer4-1 IP: Internet Protocol r Datagram format r IPv4 addressing r DHCP: Dynamic Host Configuration Protocol r NAT: Network Address Translation.
Network Layer4-1 Router Architecture Overview Two key router functions: r run routing algorithms/protocol (RIP, OSPF, BGP) r switching datagrams from incoming.
12 – NAT, ICMP, IPv6 Network Layer4-1. Network Layer4-2 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd.
CS 6401 IPv6 Outline Background Structure Deployment.
1 IPv6 Address Management Rajiv Kumar. 2 Lecture Overview Introduction to IP Address Management Rationale for IPv6 IPv6 Addressing IPv6 Policies & Procedures.
Network Layer4-1 NAT: Network Address Translation local network (e.g., home network) /24 rest of.
Introduction to IPv6 NSS Wing,BSNL Mobile Services, Ernakulam 1.
1 ECE453 – Introduction to Computer Networks Lecture 12 – Network Layer (IV)
CS 1652 The slides are adapted from the publisher’s material All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Jack Lange.
12 – IP, NAT, ICMP, IPv6 Network Layer.
1 Kommunikatsiooniteenuste arendus IRT0080 Loeng 12, “ IP v6 + QoS” Avo Ots telekommunikatsiooni õppetool, TTÜ raadio- ja sidetehnika inst.
Router Architecture Overview
© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. © The McGraw-Hill Companies, Inc. IP version 6 Asst. Prof. Chaiporn Jaikaeo,
Fall 2005Computer Networks20-1 Chapter 20. Network Layer Protocols: ARP, IPv4, ICMPv4, IPv6, and ICMPv ARP 20.2 IP 20.3 ICMP 20.4 IPv6.
Internet Protocol ECS 152B Ref: slides by J. Kurose and K. Ross.
1 Kommunikatsiooniteenuste arendus IRT0080 Loeng 3/2010 Avo Ots telekommunikatsiooni õppetool, TTÜ raadio- ja sidetehnika inst.
1 Sidevõrgud IRT 0020 loeng 1 11.sept Avo Ots telekommunikatsiooni õppetool, TTÜ raadio- ja sidetehnika inst.
1 Network Layer Lecture 16 Imran Ahmed University of Management & Technology.
1 Sidevõrgud IRT 0020 loeng 730. okt Avo Ots telekommunikatsiooni õppetool raadio- ja sidetehnika instituut
CSC 600 Internetworking with TCP/IP Unit 7: IPv6 (ch. 33) Dr. Cheer-Sun Yang Spring 2001.
Network Layer4-1 IP: Internet Protocol r Datagram format r IPv4 addressing r DHCP: Dynamic Host Configuration Protocol r NAT: Network Address Translation.
Network Layer4-1 Chapter 4 roadmap 4.1 Introduction and Network Service Models 4.2 Routing Principles 4.3 Hierarchical Routing 4.4 The Internet (IP) Protocol.
Sharif University of Technology, Kish Island Campus Internet Protocol (IP) by Behzad Akbari.
Page 1 Network Addressing CS.457 Network Design And Management.
Transport Layer3-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
EEC-484/584 Computer Networks Lecture 10 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
4: Network Layer4b-1 IPv6 r Initial motivation: 32-bit address space completely allocated by r Additional motivation: m header format helps speed.
17 Sidevõrgud IRT 4060/ IRT 0020 vooruloeng 2 / 22. sept 2004 Avo Ots telekommunikatsiooni õppetool, TTÜ raadio- ja sidetehnika inst.
Network Layer by peterl. forwarding table routing protocols path selection RIP, OSPF, BGP IP protocol addressing conventions datagram format packet handling.
Wide Area Networks and Internet CT1403 Lecture-7: Internet Network Layer (Part-2) 1.
Data Communications and Computer Networks Chapter 4 CS 3830 Lecture 20 Omar Meqdadi Department of Computer Science and Software Engineering University.
Chapter 27 IPv6 Protocol.
© Janice Regan, CMPT 128, CMPT 371 Data Communications and Networking Network Layer NAT, IPv6.
Advance Computer Networks Lecture#11 Instructor: Engr. Muhammad Mateen Yaqoob.
1 IEX8175 RF Electronics Avo Ots telekommunikatsiooni õppetool, TTÜ raadio- ja sidetehnika inst.
CSE5803 Advanced Internet Protocols and Applications (13) Introduction Existing IP (v4) was developed in late 1970’s, when computer memory was about.
Network Layer4-1 NAT: Network Address Translation local network (e.g., home network) /24 rest of.
Lect1..ppt - 01/06/05 CDA 6505 Network Architecture and Client/Server Computing Lecture 3 TCP and IP by Zornitza Genova Prodanoff.
Chapter 3 TCP and IP 1 Chapter 3 TCP and IP. Chapter 3 TCP and IP 2 Introduction Transmission Control Protocol (TCP) User Datagram Protocol (UDP) Internet.
Lecture 13 IP V4 & IP V6. Figure Protocols at network layer.
Network Layer session 1 TELE3118: Network Technologies Week 5: Network Layer Forwarding, Features Some slides have been taken from: r Computer.
4: Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Network Layer 4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note.
Homework 4 Out: Fri 2/24/2017 In: Fri 3/10/2017.
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 CPSC 335 Data Communication.
Chapter 3 TCP and IP Chapter 3 TCP and IP.
Next Generation: Internet Protocol, Version 6 (IPv6) RFC 2460
The New Internet Protocol
IPv6 / IP Next Generation
The New Internet Protocol
What’s “Inside” a Router?
Kommunikatsiooniteenuste arendus IRT0080
Some slides have been taken from:
DHCP: Dynamic Host Configuration Protocol
Chapter 4: outline 4.1 Overview of Network layer data plane
Presentation transcript:

1 Kommunikatsiooniteenuste arendus IRT0080 Loeng 10/2008 Avo Ots telekommunikatsiooni õppetool, TTÜ raadio- ja sidetehnika inst.

2 Nõuded lahendusele Lahendus peaks sisaldama: Lähteandmete täpsustuse (arenduse) tagamaks terviklahendust Infovoogude hinnangu ja seadmete ning sidekanalite valiku Hinnangu leitud lahendusele (töökindlus, realiseeritavus, hallatavus, jms.) Mõnerealise kokkuvõtte tööjaotusest tiimi sees

3 Nutitelefoni ühendamine (1) Nutitelefon (Smartphone) ühendatakse kommunikatsioonivõrgu vahendusel rakenduste serveriga. Sidekanal on paketipõhine ja vastab EDGE mobiilsidevõrgule esitatavatele nõuetele. Valida teenuste koosseis ja ühenduse haldusmeetod.

4 Liiklusinfo edastus (2) Digi TV programmi edastamisega tegelev firma eraldab kõik DVB-T kanalid tagamaks liiklusolukorra monitoorimist Eestis. Liiklusinfo edastus on realiseeritud nendest kohtadest, kus on olemas 3G levi. Videokujutist koondatakse digi TV firma keskusesse üle 3G võrgu ja seejärel levitatakse kasutades kaasaegset digi TV levivõrku. Üheaegselt edastatvaid liiklusmonitooringu punkte on kuni 20.

5 Videovoogude jaotamine (3) Koostada laiaribalisel edastuskanalil (Ethernet) põhineva videovoogude jaotusvõrgu eskiislahendus. Lahendus katab ühe büroohoone ning võimaldab kliendiliideses andmeülekannet bitikiirusega kuni 8 Mbit/s. Videovoogude jaotus peab tagama võimalusel võrgukoormuse minimiseerimise ning oluliste võrgusõlmede halduse.

6 Virtuaalne eravõrk (4) Virtuaalne eravõrk (VPN) realiseeritakse hajuspaigutusega firma tarbeks. Hoonesisese võrgutehnoloogiana eelistatakse 100 Mbit/s Ethernet võrku. Erinevate asutuse koosseisu kuuluvate osakondade kokkuühendamisel kasutatakse ADSL 2+ põhist avalikku andmevõrku. Terminaalide arv on minimaalselt 50.

7 IP transmissioon (5) Olemasolevaid aegmultipleks võrguliidesega telefonijaamu on vaja kasutada firmas, mille harukontorid paiknevad Eestis (neljas keskuses) ja kus põhiliseks sideteenuseks on kõne. Firma andmeside on väljaarendatud IP võrkudena ning sidelahenduse integreerimiseks on tarvilik koostada eskiislahendus telefonikõnede edastusvõimalusi andmevõrgu kaudu. Terminalide maksimaalarv igas firma kontoris on 100.

8 Videovoogude kommutatsioon (6) Väikese saatemahuga telestuudio seadmestik viiakse samm sammult üle videovoogude digitaalsele käsitlusele. Andmeedastus põhineb digitaalsetel järjestikliidestel SDI (vastavalt standardile ITU-R BT.656 ja SMPTE 259M). Seadmestik tagab kuni 20 videovoo allika kommuteerimise.

9 WLAN võrk (7) Koostada juurdepääsuvõrk, tagamaks kuni 60 terminaali (infovoog igaühes 8 Mbit/s) ühendamine kohtvõrku kasutades WLAN tehnoloogia (IEEE a) võrguühendust ja valida sobib ühendusviis võrku kuuluva andmeserveriga eeldades terminaalide üheaegset infokasutust. Terminaalid paiknevad ruudukujulises ruumis, mille diagonaal on 700 m.

10 IP telefonilahendus (8) Ettevõte paikned kahes eraldiseisvas hoones (nt üks hoone Tallinnas ja teine Tartus). Tegevuse iseloom eeldab tihedat telefonisuhtlust (0.2 Erl iga abonendi kohta). Ettevõte otsustas kasutada IP põhist telefonisüsteemi, nõuded kõnekvaliteedile on kesktasemel (MOS ~ 3.5). Kummaski ettevõtte asupaigas on 500 telefoni (töökohta).Telefonisüsteem on eraldiseisev ülejäänud andmevõrkudest. Koostada ettevõtte kohtvõrgu eskiislahendus, valida välisühendused ning sobivad IP telefonisüsteemi parameetrid.

11 Tuumvõrguühendus (9) Koostada tuumvõrk tagamaks andmekontsentraatori (koondab infovoo mahuga 500 Mbit/s) ühendamiseks kolme eraldiasuva serveriga, millised paiknevad tinglikult võrdkülgse kolmnurga (külje pikkus 15 km) tippudes. Koormusejaotus on halvimal juhul ainult ühele serverile suunatud.

12 IPv6 Redefine functions of IP (version 4) –What changes should be made in…. IP addressing IP delivery semantics IP quality of service IP security IP routing IP fragmentation IP error detection

13 IPv6 Initial motivation: 32-bit address space soon to be completely allocated (est. 2008) Additional motivation: –Remove ancillary functionality header format helps speed processing/forwarding –Add missing, but essential functionality header changes to facilitate QoS new “anycast” address: route to “best” of several replicated servers IPv6 datagram format: –fixed-length 40 byte header –no fragmentation allowed

14 IPv6 Header (Cont) Priority: identify priority among datagrams in flow Flow Label: identify datagrams in same “flow.” (concept of“flow” not well defined). Next header: identify upper layer protocol for data

15 IPv6 Changes Scale – addresses are 128bit –Header size? Simplification –Removes infrequently used parts of header –40 byte fixed header vs. 20+ byte variable header IPv6 removes checksum –IPv4 checksum = provide extra protection on top of data-link layer and below transport layer –End-to-end principle Is this necessary? IPv6 answer =>No –Relies on upper layer protocols to provide integrity –Reduces processing time at each hop

16 IPv6 Changes IPv6 eliminates fragmentation –Requires path MTU discovery ICMPv6: new version of ICMP –additional message types, e.g. “Packet Too Big” –multicast group management functions Protocol field replaced by next header field –Unify support for protocol demultiplexing as well as option processing Option processing –Options allowed, but only outside of header, indicated by “Next Header” field –Options header does not need to be processed by every router Large performance improvement Makes options practical/useful

17 IPv6 Changes TOS replaced with traffic class octet –Support QoS via DiffServ FlowID field –Help soft state systems, accelerate flow classification –Maps well onto TCP connection or stream of UDP packets on host-port pair Easy configuration –Provides auto-configuration using hardware MAC address Additional requirements –Support for security –Support for mobility

18 Transition From IPv4 To IPv6 Not all routers can be upgraded simultaneous –no “flag days” –How will the network operate with mixed IPv4 and IPv6 routers? Two proposed approaches: –Dual Stack: some routers with dual stack (v6, v4) can “translate” between formats –Tunneling: IPv6 carried as payload in an IPv4 datagram among IPv4 routers

19 Tunneling A B E F IPv6 tunnel Logical view: Physical view: A B E F IPv6 IPv4

20 Tunneling A B E F IPv6 tunnel Logical view: Physical view: A B E F IPv6 C D IPv4 Flow: X Src: A Dest: F data Flow: X Src: A Dest: F data Flow: X Src: A Dest: F data Src:B Dest: E Flow: X Src: A Dest: F data Src:B Dest: E A-to-B: IPv6 E-to-F: IPv6 B-to-C: IPv6 inside IPv4 B-to-C: IPv6 inside IPv4

21 Dual Stack Approach Dual-stack router translates b/w v4 and v6 –v4 addresses have special v6 equivalents –Issue: how to translate “FlowField” of v6 ?

22 QoS Pakettvõrkudes liikluse korralduse (traffic engineering) mõiste “garanteeritud teenuse kvaliteet” (QoS, Quality of Service) tähendab tõenäosuslikku hinnangut, et sidevõrk jälgib liikluslepet. Paljudel juhtudel kasutatakse QoS tõenäosusena, et pakett läbib võrku saatjast vastuvõtjani oma ettemääratud ajavahemiku jooksul.

23 Teenusekvaliteedi aspektid QoS – Quality of Service ITU-T E.800 Recommendation

24 Teenusekvaliteedi aspektid (2) Teenuse Kättesaadavus (Accessibility) Teenuse Püsivus (Retainability) Teenuse Terviklikus (Integrity) QoS QoS parameetrid

25 Teenusekvaliteedi aspektid (3) Iga teenuse jaoks oma nõuded QoS profiil Erinevad teenusekvaliteedi tasemed vastavalt nõuetele

26 Introduction Coexistence of heterogeneous networks –Home networks, WLAN, 2G/3G, Campus-wide, satellite, … –The development of multimode handsets is a major challenge –Currently discussed standards fall short –Tomorrow user’s will expect the technology structure to “disappear” and be of no concern Network architecture designed by IST project Daidalos –Provide seamless services accessible anytime anywhere across heterogeneous technologies –Enhanced Mobile IPv6 platform for mobility and QoS –Support for optimized mobility –Integration with QoS resource management

27

28 Mobile Terminal IAL DVB-T MBMS TD-CDMA WLANWiMAX QoSAL UDLR QoSC MTC IIS User GUI CARD FHO IPv6++/MIPv6/Multicast Technologies Terminal Intelligence QoS Handover

29 Access Router / Access Point DVB-T MBMS TD-CDMA WLANWiMAX QoSAL UDLR QoSM CARDPA Technologies Terminal Intelligence QoS Network Intelligence AM MM FHOCTD&M Handover IPv6++/ MIPv6/ PIM ENC

30 Handover Mobile Initiated Handover Network Initiated Handover Triggered At startup Upon losing signal Accounts for user preferences candidate APs load (QoS) signal strengths Triggered by Overloaded AP (QoS) losing signal Accounts for signal strengths of MTs APs load (QoS)

31 QoS vajadus QoS vajadus esmases tähenduses tuleneb video ja suure edastuskiirusega (mobiilsetest) andmesessioonidest Lõplikult kavatsetakse realiseerida standardina IEEE n, vahevariant realiseeriti standardina IEEE e, mida toetab Proximi AP-4000.

32 Roadmap – WLAN

33 Link