PPC-10 Smolenice Castle, Slovakia Sept , 2011

Slides:



Advertisements
Similar presentations
The International Workshop Influence of atomic displacement rate on radiation-induced ageing of power reactor components: Experimental and modeling October.
Advertisements

18 th International Conference on Plasma Surface Interaction in Controlled Fusion Toledo, Spain, May 26 – 30, Deuterium trapping in tungsten damaged.
MatSE 259 Exam 1 Review Session 1.Exam structure – 25 questions, 1 mark each 2.Do NOT forget to write your student I.D. on the answer sheet 3.Exams are.
NEEP 541 – Creep Fall 2002 Jake Blanchard.
DICTRA Mobility Database for Zr alloys C. Toffolon-Masclet, C. Desgranges and J.C. Brachet CEA Saclay, France C. Toffolon-Masclet et al., CALPHAD XLI,
Chemical composition and heat treatments
PART 2 : HEAT TREATMENT. ALLOY SYSTEMS STEELS ALUMINUM ALLOYS TITANIUM ALLOYS NICKEL BASE SUPERALLOYS.
Atom Probe Tomography of ODS steels containing Hf 2 nd ODDISSEUS Workshop. 22 nd March, 2015 Maria A Auger Postdoctoral Research Assistant Department of.
RUSSIAN RESEARCH CENTER KURCHATOV INSTITUTE Development of annealing for VVER-1000 reactor vessels Experimental assessment of possibility for performance.
Dynamic hydrogen isotope behavior and its helium irradiation effect in SiC Yasuhisa Oya and Satoru Tanaka The University of Tokyo.
Multiscale Computer Simulations and Predictive Modeling of RPV Embrittlement Naoki Soneda Central Research Institute of Electric Power Industry (CRIEPI),
Materials for fusion power plants Stéphane Forsik - Phase Transformations and Complex Properties Group FUSION POWER PLANT.
Atom Probe Tomography of Ion- Irradiated Model ODS Alloys Andrew London* 4 th Year DPhil C.R.M Grovenor, S Lozano-Perez* B. K. Panigrahi** * Department.
Understanding Transformations in Copper Bearing Low Carbon Steels Teruhisa Okumura Department of Materials Science and Metallurgy University of Cambridge.
A.V. Kozlov, I.A. Portnykh, V.L. Panchenko FSUE «INM», , Box 29, Zarechny, Sverdlovsk region, Russia Corresponding author. fax: ;
INRNE BAS NEC'2007, Varna, Bulgaria Positron annihilation versus electron cloud Angel H. Angelov Institute for Nuclear Research and Nuclear Energy.
FAST NEUTRON FLUX EFFECT ON VVER RPV’s LIFETIME ASSESSMENT
CHARLES UNIVERSITY PRAGUE Department of Physics of Materials In-situ neutron diffraction and acoustic emission investigation of twinning activity in cast.
Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment G.M. Wright University of Wisconsin-Madison, FOM – Institute.
Vacancy type defects in oxide dispersion strengthened steels V. Slugeň, J. Veterníková, V. Sabelová, J. Degmová, R. Hinca, M. Petriska and S. Sojak Institute.
“Influence of atomic displacement rate on radiation-induced ageing of power reactor components” Ulyanovsk, 3 -7 October 2005 Displacement rates and primary.
International Workshop on “Influence of atomic displacement rate, neutron spectrum and irradiation temperature on radiation-induced ageing of power reactor.
Overview of ‘classical’ or ‘standardized’ DPA calculation stemming from the reactor world. Colin English NNL.
1. Chapter 09: Phase Diagram 2 Introduction Phase Diagrams are road maps.
Simulating fusion neutron damage using protons in ODS steels Jack Haley.
Fluence–dependent lifetime variations in neutron irradiated MCZ Si measured by microwave probed photoconductivity and dynamic grating techniques E.Gaubas,
IRRADIATION DAMAGE V. PONTIKIS CEA – IRAMIS – LABORATOIRE DES SOLIDES IRRADIES Matgen-iv.3 – Lerici, Sept , 2011.
What do we expect from DAFS ? DIFFABS beamline setup Perspectives Simultaneous DAFS and XAFS analyses to evidence the Y- and Ti- species in nano-structured.
Positron and Positronium Chemistry PPC10, September, Smolenice Castle, Slovakia Thermal annealing influence on ions implanted Fe-Cr model alloys.
Kinetic Monte Carlo simulation of irradiation effects in bcc Fe-Cu alloys L. Malerba 1, C. Domain 2, C. S. Becquart 3 and D. Kulikov 1,4,5 COSIRES-7, Helsinki,
NEEP 541 – Radiation Damage in Steels Fall 2002 Jake Blanchard.
Byeong-Joo Lee cmse.postech.ac.kr Semi-Empirical Atomistic Simulations in Materials Science and Engineering Byeong-Joo Lee Pohang University of Science.
Determination of the 3  fraction in positron annihilation Bożena Jasińska Institute of Physics, Maria Curie Sklodowska University Lublin, Poland.
MATERIAL ISSUES FOR ADS: MYRRHA-PROJECT A. Almazouzi SCKCEN, Mol (Belgium) On behalf of MYRRHA-TEAM and MYRRHA-Support.
“Materials for Fission & Fusion Power” Steve Roberts Sergei Dudarev CCFE George Smith Gordon Tatlock Liverpool Angus Wilkinson Patrick Grant Andrew Jones.
Modification of Si nanocrystallites in SiO2 matrix
B. Titanium-based Alloys Titanium is hcp at room temperature – and transform to the bcc structure on heating to 883 o C. Alloying elements are added to.
The use of both neutron and ion irradiation to show the microstructural origins of strong flux-sensitivity of void swelling in model Fe-Cr-Ni alloys T.
Tacis 2.02/95 on VVER 440 RPV Integrity TACIS Project: R8.01/98 – TRANSLATION, EDITING AND DIFFUSION OF DOCUMENTS (Result Dissemination) Tacis R2.02/95,
Precipitation Hardening
PROGRESS ON LOW ACTIVATION STRUCTURAL STEELS RECENT RESULTS ON NANOSTRUCTURED FERRITIC ALLOYS A.F.ROWCLIFFE (ORNL) ARIES PROJECT MEETING U.C.S.D. Jan 22.
1 Russian Research Center” Kurchatov Institute” Alexander Ryazanov Charge State Effects of Radiation Damage on Microstructure Evolution in Dielectric Materials.
1 ADC 2003 Nano Ni dot Effect on the structure of tetrahedral amorphous carbon films Churl Seung Lee, Tae Young Kim, Kwang-Ryeol Lee, Ki Hyun Yoon* Future.
Lecture 7 Lattice Defects, Vacancies PHYS 430/603 material Laszlo Takacs UMBC Department of Physics.
Radiation Embrittlement of Ferritic Steels Global Objective Temperature Cv or J1c RVSP - Reactor Vessel Surveillance Programs Recent advances Effect of.
ENGR-45_Lec-18_DisLoc-Strength-2.ppt 1 Bruce Mayer, PE Engineering-45: Materials of Engineering Bruce Mayer, PE Registered Electrical.
Fluence dependent recombination lifetime in neutron and proton irradiated MCz, FZ and epi-Si structures E.Gaubas, J.Vaitkus, T.Čeponis, A.Uleckas, J.Raisanen,
Radiation Damage Quick Study Edward Cazalas 3/27/13.
Investigation of 15kh2NMFAA steel and weld after irradiation in the “Korpus” facility on the RBT-6 reactor D. Kozlov, V. Golovanov, V. Raetsky, G. Shevlyakov,
NEEP 541 – Phase Transformation due to Radiation Fall 2003 Jake Blanchard.
Recent Progress on Ferritic Alloys for Fusion Structural Applications R.J Kurtz 1 & U.S. Fusion Materials Scientists 1 Pacific Northwest National Laboratory.
1 G. Cambi, D.G. Cepraga, M. Frisoni Enea & Bologna University Team OSIRIS neutronic and activation simulation with Scalenea-ANITA in support of PACTITER/CORELE.
4.1.1 Nanostructure and micro chemical evolution under irradiation and thermal ageing g : development of phase field models describing microstructure.
Plastic deformation Extension of solid under stress becomes
MatCalc approach for the modelling of the vacancy concentration evolution (MatCalc ) P. Warczok.
Ignacio Martin-Bragado1, Ignacio Dopico1 and Pedro Castrillo2
08/ Institute for Safety Research Hans-Werner Viehrig Member of the Leibniz Community Post Mortem Investigations of the NPP Greifswald WWER-440 Reactor.
MatSE 259 Exam 1 Review Session 1.Exam structure – 25 questions, 1 mark each 2.Do NOT forget to write your student I.D. on the answer sheet 3.Exams are.
Microstructural development of HOPG under ion-irradiation ○ Makoto Nonaka 1, Sosuke Kondo 2 and Tatsuya Hinoki 2 1 Graduate school of Energy Science, Kyoto.
Characterization of He implanted Eurofer97
Alloy Design For A Fusion Power Plant
Reactor Pressure Vessel Cladding
Information on Be properties
Reminder of few basic facts about displacements per atom (dpa)
16th RD 50 Workshop - Barcelona, 31 May - 2 June 2010
1. Materials in nuclear engineering 2
Irradiation Shift – Questions and Answers
4th n-FAME Workshop – Edinburgh, Scotland (UK) – 4-5 June, 2013
XI Conference on Reactor Materials May , 2019, Dimitrovgrad
Moscow Engineering Physics Institute Department of Materials Science
Presentation transcript:

PPC-10 Smolenice Castle, Slovakia Sept. 5 - 9, 2011 Positron annihilation study of neutron-irradiated nuclear reactor pressure vessel (RPV) steels and their model alloys Y. Nagai1, A. Kuramoto1, T. Toyama1, T. Takeuchi2, M. Hasegawa3 1The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313, Japan 2Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan 3Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577, Japan hasegawa@imr.tohoku.ac.jp

2) Fe-Cu Model Alloys: Cu Nano-Clusters (Precipitates) Outline 1) Background 2) Fe-Cu Model Alloys: Cu Nano-Clusters (Precipitates) a) Size: 2D-ACAR Momentum Smearing b) Number Density: AMOC 3) RPV Steel: Surveillance Test Specimen Materials Mechnisms: Nanostructural Features Irradiation Embrittlement & Hardening 1st & 2nd Generation A533B Post Irradiation Annealing (PIA) Experiments

Origin of irradiation-induced embrittlement Nuclear Reactor Pressure Vessel (RPV) Steel Origin of irradiation-induced embrittlement 1) Solute Nano-Clusters 2) Matrix Defects (vacancy-type defects, dislocation loops, ···) dislocation Grain boundary 3) P Segregation at Grain Boundary

Laser-Assisted Local Electrode Atom Probe Position sensitive ion detector Z Y X Local electrode Laser Vtotal Needle sample Vextraction ~100nm Time of Flight Mass 4 Energy-compensated type (with “Reflectron”) 4 4

Cu Nano-Particles in Fe Positron Quantum-Dot Confinement in a Precipitate of 59 Cu Atoms LEAP 3D-Atom Probe 2x107 Atoms, 1hour e+ Self-Searching: Cu Nano-Particles in Fe 1nm Density isosurface of a quantum-dot confined positron in a Cu59 in Fe matrix. The isodensity value is 0.5% of the maximum. 60x60x170 nm

2a) Cu Nano-Precipitates (Clusters) : Size 2D-ACAR: Momentum Smearing Z. Tang et al.: J. Phys.: Condens. Matter 20 (2008) 445203, Size-dependent momentum smearing effect of positron annihilation radiation in embedded nano Cu clusters

2b) Cu Nano-Precipitates (Clusters) : Number Density AMOC: Time Evolution of HMCF (W-Parameter)    Trapping Model A. Inoue et al.: Phys. Rev. B83 (2011) 115459

Fe-0.88at.%Cu: Thermal Aging @550˚C CDB Ratio Curve 3D-AP 2h 30nm 10nm 0.1h 0.2h 2h: Complete e+ Quantum-Dot Confinement Fig.1

Time Evolution of CDB HMCF (W-Parameter) Pure Cu Pure Fe

Positron Age-Momentum Correlation (AMOC) Using digital oscilloscope:Time resolution ~170ps Number density estimated by positron annihilation Time dependent HMCF (W-parameter) Positron trapping rate Number density Number Density (×1017 cm-3) 3D-AP e+ Aging Time (h)    Size Diameter (nm) 0.1 0.2 2 0.9 1.1 2.5 0.15 1.2 1.9 0.61 1.4 1.8 In this talk, firstly, I would like to briefly explain why we employ positron annihilation for elemental analysis rather than other technique, and introduce the site which positron probes. For defect scientists, positron is a tool of vacancy-type defects. But, not only the vacancy-type defects but also other sites, such as positron affinitive embedded clusters, polar groups in polymers, and so on, are also positron trapping sites. In this talk, I would like to concentrate on “positron affinitive embedded clusters in materials”. As examples, I introduce Cu clusters in Fe and solute clusters, so called GP zone, in Al. And I would like to comment two points on CDB data analysis and their interpretation from my personal experience. Finally, I show the competition between positron annihilation and other techniques in the study of embedded clusters.

3) RPV Steel: Surveillance Test Specimen Materials 1St & 2nd Generation A533B Irradiation –Induced Embrittlement (Hardening) Mechanisms Post Irradiation Annealing (PIA) Experiments PIA: 1st Gen A533B Kuramoto et al.: Submitted to J. Nucl. Mater. Fluence Dependence Takeuchi et al. : J. Nucl. Mater. 402 (2010) 93.

Reactor Pressure Vessel (RPV) Steel: A533B Chemical Composition wt.% A533B C Si Mn P S Ni Cr Cu Mo 1st. Gen. 0.19 0.30 1.30 0.015 0.010 0.68 0.17 0.16 0.53 2nd. Gen. 1.43 0.004 0.001 0.65 0.13 0.04 0.50 Purified: Cu, P, S JMTR Irradiation Fluence: 3.9x1019n/cm2 (0.061dpa) Flux: 1.8x1013n/cm2・sec Temperature: 2902C

Annealing Temperature [ ℃ ] Average Positron Lifetime [ps] V Annealing Behavior of Average Positron Lifetime 1st. Gen.(0.16Cu) & 2nd. Gen.(0.04Cu) A533B, 3.9×1019 n/cm2 200 300 400 500 600 100 120 140 160 180 Annealing Temperature [ ℃ ] Average Positron Lifetime [ps] V 1 Unirrad. (1st. Gen.) Fe bulk Unirrad. (2nd. Gen.) st. Gen. (0.16Cu) 2 nd. Gen. (0.04Cu) As-irrad.

CDB HMCF-LMCF Correlations 1st. Gen. (0.16Cu) & 2nd. Gen. (0.04Cu) A533B, 3.9×1019 n/cm2 450 °C 400 °C 300 °C As-irrad. (1st. Gen. ) 550 °C Unirrad. (1st. Gen. ) 600 °C 600 °C As-irrad. (2nd. Gen. ) Unirrad. (2nd. Gen. ) 450 °C 300 °C

Neutron Irradiation: 8.3×1018n/cm2 (1.2×10-2dpa, ~100ºC) Fe-Cu Model Alloys ( 0.3wt.%Cu, 0.05wt.%Cu ) 0.5 0.55 0.6 0.65 0.004 0.006 0.008 0.01 0.012 0.014 LMCF HMCF Pure Cu 500 0.3Cu 500 0.05Cu As-irrad. Pure Fe Unirrad. Unirrad. As-irrad.

Atom Maps of the Solutes: Annealing Behavior (As-irrad.~400℃) 1st. Gen. (0.16Cu) A533B, 3.9×1019 n/cm2 As-irrad. 350 °C 400 °C Cu Si Mn P Ni 10nm

Atom Maps of the Solutes: Annealing Behavior (As-irrad.~350 ℃) 2nd. Gen. (0.04Cu) A533B, 3.9×1019 n/cm2 As-irrad. 300 ℃ 350 ℃ Si Mn Ni P Cu 10nm

Average Chemical Compositions of Solute Clusters 3.9×1019 n/cm2 1st. Gen. (0.16Cu) A533B 2nd. Gen. (0.04Cu) A533B Cu Mn Si Composition [%] Ni Composition [%] Fe Annealing Temperature [°C] Annealing Temperature [°C]

Radius of Gyration (rg), Number Density (Nd) & Volume Fraction (Vf) A533B, 3.9×1019 n/cm2 rg Radius of Gyration 1st. Gen. (0.16Cu) CuMnSiNi Clusters 1st. Gen. 2nd. Gen. (0.04Cu) MnSiNi Clusters Nd Number Density 2nd. Gen. Hardening Russell-Brown Model Vf Volume Fraction

Annealing Behavior of Irradiation Hardening (∆Hv) 1st. Gen. (0.16Cu) A533B, 3.9×1019 n/cm2 e+ : Vac-Defects 3D-AP: CuMnSiNi Clusters As-irrad.

Av 3.9×1019n/cm2 LMCF HMCF Hv 1st. Gen. (0.16Cu) 2nd. Gen. (0.04Cu) As-irrad. Annealing Temperature [°C]

What & How Positron Annihilation Can Say on RPV-Embrittlement Mechnisms ? Unique Nano-Features 1) Cu-Rich Nano-Clusters Evolution, Recovery: Clear-Cut Info. Size, Number Density: Not Easy 2) Vacancy-Related Defects Correlation: Mech. Properties Integration: Other Methods, such as 3D-AP, SANS,TEM Quantative !!