智慧型系統實驗室 iLab 南台資訊工程 1 Evaluation for the Test Quality of Dynamic Question Generation by Particle Swarm Optimization for Adaptive Testing Department of.

Slides:



Advertisements
Similar presentations
Advanced Methods and Analysis for the Learning and Social Sciences PSY505 Spring term, 2012 January 23, 2012.
Advertisements

MEMS Thermal & Fluid Control Lab. 國立台灣大學機械工程系微機械熱流控制實驗室 Department of Mechanical Engineering National Taiwan University, Taipei, Taiwan Department of Mechanical.
Feature Selection for Pattern Recognition J.-S. Roger Jang ( 張智星 ) CSIE Dept., National Taiwan University ( 台灣大學 資訊工程系 )
Item Response Theory in a Multi-level Framework Saralyn Miller Meg Oliphint EDU 7309.
Item Response Theory in Health Measurement
1 st Year2 nd Year3 rd Year4 th Year FallSpringFallSpringFallSpringFallSpring 資料庫實務 (Database Practices) 資料庫系統 (Database System) 人工智慧 (Artificial Intelligence)
LensBar – Visualization for Browsing and Filtering Large Lists of Data Toshiyuki Masui Proceedings. IEEE Symposium on Information Visualization, 1998 元智資工所.
Adaptive Web Caching: Towards a New Caching Architecture Authors and Institutions: Scott Michel, Khoi Nguyen, Adam Rosenstein and Lixia Zhang UCLA Computer.
Fractal Approaches for Visualizing Huge Hierarchies Hideki Koike, Hirotaka Yoshihara Department of Communications and Systems University of Electro-Communications.
Item Response Theory. Shortcomings of Classical True Score Model Sample dependence Limitation to the specific test situation. Dependence on the parallel.
Towards a Better Understanding of Web Resources and Server Responses for Improved Caching Craig E. Wills and Mikhail Mikhailov Computer Science Department.
Objective Exam Score Distribution. Item Difficulty Power Item
Authoring environments for adaptive testing Thanks to Eduardo Guzmán, Ricardo Conejo and Emilio García-Hervás.
張 燕 光 資訊工程學系 Dept. of Computer Science & Information Engineering,
A Survey of proxy Cache Evaluation Techniques 系統實驗室 田坤銘
Proxy Caching the Estimates Page Load Delays Roland P. Wooster and Marc Abrams Network Research Group, Computer Science Department, Virginia Tech 元智大學.
Evaluating Content Management Techniques for Web Proxy Caches Martin Arlitt, Ludmila Cherkasova, John Dilley, Rich Friedrich and Tai Jin Hewlett-Packard.
© UCLES 2013 Assessing the Fit of IRT Models in Language Testing Muhammad Naveed Khalid Ardeshir Geranpayeh.
Classical Test Theory By ____________________. What is CCT?
Item Analysis: Classical and Beyond SCROLLA Symposium Measurement Theory and Item Analysis Modified for EPE/EDP 711 by Kelly Bradley on January 8, 2013.
Intelligent System Lab. (iLab) Southern Taiwan University of Science and Technology 1 Estimation of Item Difficulty Index Based on Item Response Theory.
Identification of Misfit Item Using IRT Models Dr Muhammad Naveed Khalid.
Item Response Theory. What’s wrong with the old approach? Classical test theory –Sample dependent –Parallel test form issue Comparing examinee scores.
南台科技大學 資訊工程系 Posture Monitoring System for Context Awareness in Mobile Computing Authors: Jonghun Baek and Byoung-Ju Yun Adviser: Yu-Chiang Li Speaker:
資訊工程系智慧型系統實驗室 iLab 南台科技大學 1 Optimizing Cloud MapReduce for Processing Stream Data using Pipelining 出處 : 2011 UKSim 5th European Symposium on Computer Modeling.
You got WHAT on that test? Using SAS PROC LOGISTIC and ODS to identify ethnic group Differential Item Functioning (DIF) in professional certification exam.
Modern Test Theory Item Response Theory (IRT). Limitations of classical test theory An examinee’s ability is defined in terms of a particular test The.
STRONG TRUE SCORE THEORY- IRT LECTURE 12 EPSY 625.
國立屏東商業技術學院 資訊工程系 ( 所 ) 多媒體技術發展實驗室 Laboratory of Multimedia Technology Development Department of Computer Science and Information Engineering Nation Pingtung.
Introduction For some compiler, the intermediate code is a pseudo code of a virtual machine. Interpreter of the virtual machine is invoked to execute the.
The ABC’s of Pattern Scoring Dr. Cornelia Orr. Slide 2 Vocabulary Measurement – Psychometrics is a type of measurement Classical test theory Item Response.
Measuring Mathematical Knowledge for Teaching: Measurement and Modeling Issues in Constructing and Using Teacher Assessments DeAnn Huinker, Daniel A. Sass,
資訊工程系智慧型系統實驗室 iLab 南台科技大學 1 A Static Hand Gesture Recognition Algorithm Using K- Mean Based Radial Basis Function Neural Network 作者 :Dipak Kumar Ghosh,
University of Georgia – Chemistry Department JExam - A Method to Measure Outcomes Assessment Charles H. Atwood, Kimberly D. Schurmeier, and Carrie G. Shepler.
A COMPARISON METHOD OF EQUATING CLASSIC AND ITEM RESPONSE THEORY (IRT): A CASE OF IRANIAN STUDY IN THE UNIVERSITY ENTRANCE EXAM Ali Moghadamzadeh, Keyvan.
Intelligent Space 國立台灣大學資訊工程研究所 智慧型空間實驗室 Service Behavior Consistency in the OSGi Platform Authors Y.Qin, H.Hao,L.Jun, G.Jidong and L.Jian Proceedings.
Pearson Copyright 2010 Some Perspectives on CAT for K-12 Assessments Denny Way, Ph.D. Presented at the 2010 National Conference on Student Assessment June.
Design a personalized e-learning system based on item response theory and artificial neural network approach Ahmad Baylari, Gh.A. Montazer IT Engineering.
A Study on the Exponential Decay for the Bearing Defect Diagnosis 沈毓泰 南台科技大學 機械系 教授.
Validity and Item Analysis Chapter 4. Validity Concerns what the instrument measures and how well it does that task Not something an instrument has or.
Validity and Item Analysis Chapter 4.  Concerns what instrument measures and how well it does so  Not something instrument “has” or “does not have”
The ABC’s of Pattern Scoring
CFTP - A Caching FTP Server Mark Russell and Tim Hopkins Computing Laboratory University of Kent Canterbury, CT2 7NF Kent, UK 元智大學 資訊工程研究所 系統實驗室 陳桂慧.
Item Factor Analysis Item Response Theory Beaujean Chapter 6.
Applying the Resonance Frequencies of Mechanical System in the Analysis of Bearing Vibration 沈毓泰 南台科技大學 機械系 副教授.
NATIONAL CONFERENCE ON STUDENT ASSESSMENT JUNE 22, 2011 ORLANDO, FL.
Intelligent Space 國立台灣大學資訊工程研究所 智慧型空間實驗室 Managing Quality of Context in Pervasive Computing Authors Y.Bu, T.Gu, X.Tao, J.Li, S.Chen, and J.Lu Proceedings.
The Measured Access Characteristics of World-Wide-Web Client Proxy Caches Bradley M. Duska, David Marwood, and Michael J. Feeley Department of Computer.
哼唱檢索用於嵌入式系統 張智星 多媒體資訊檢索實驗室 台灣大學 資訊工程系.
Item Response Theory in Health Measurement
Intelligent Space 國立台灣大學資訊工程研究所 智慧型空間實驗室 Brainstorming Principles Reporter Chun-Feng Liao Sep 12,2005 Source D.Bellin and S.S.Simone, ”Brainstorming: A.
Item Analysis: Classical and Beyond SCROLLA Symposium Measurement Theory and Item Analysis Heriot Watt University 12th February 2003.
A Scrollbar-based Visualization for Document Navigation Donald Byrd Proceedings of the 4 th ACM conference on Digital libraries, 元智資工所 系統實驗室 楊錫謦.
Ad insertion at proxies to improve cache hit rates Amit Gupta and Geoffrey baehr, Sun Microsystems Laboratories 901 San Antonio Road Palo Alto,CA
Introduction to Computer Science Kun-Mao Chao ( 趙坤茂 ) Department of Computer Science and Information Engineering National Taiwan University, Taiwan ( 台大資訊工程系.
南台科技大學 資訊工程系 Data hiding based on the similarity between neighboring pixels with reversibility Author:Y.-C. Li, C.-M. Yeh, C.-C. Chang. Date:
資訊工程系智慧型系統實驗室 iLab 南台科技大學 1 A new social and momentum component adaptive PSO algorithm for image segmentation Expert Systems with Applications 38 (2011)
Byzantine Agreement in the Presence of Mixed Faults on Processor and Links Hin-Sing Siu, Yeh-Hao Chin, Wei-Pang Yang Senior Member, IEEE Computer Society,
Performance Indices for Binary Classification 張智星 (Roger Jang) 多媒體資訊檢索實驗室 台灣大學 資訊工程系.
南台科技大學 資訊工程系 An effective solution for trademark image retrieval by combining shape description and feature matching 指導教授:李育強 報告者 :楊智雁 日期 : 2010/08/27.
EM Algorithm 主講人:虞台文 大同大學資工所 智慧型多媒體研究室. Contents Introduction Example  Missing Data Example  Mixed Attributes Example  Mixture Main Body Mixture Model.
Lesson 2 Main Test Theories: The Classical Test Theory (CTT)
義守大學資訊工程學系 作者:郭東黌, 張佑康 報告人:徐碩利 Date: 2006/11/01
A Different Way to Think About Measurement Development:
Assessing the Quality of Instructional Materials: Item Response Theory
Using Item Response Theory to Track Longitudinal Course Changes
Aligned to Common Core State Standards
By ____________________
Longest Common Subsequence (LCS)
Edit Distance 張智星 (Roger Jang)
Presentation transcript:

智慧型系統實驗室 iLab 南台資訊工程 1 Evaluation for the Test Quality of Dynamic Question Generation by Particle Swarm Optimization for Adaptive Testing Department of Computer Science and Information Engineering Southern Taiwan University of Science and Technology, Taiwan Shu-Chen CHENG, I-Chun PEN & Yu-Chih LIN

智慧型系統實驗室 iLab 南台資訊工程 Outline 1.Introduction 2.Literature 3.Method 4.Experiment 5.Conclusion 2

智慧型系統實驗室 iLab 南台資訊工程 Introduction(3/4) Item Response Theory(IRT) –Item characteristics (difficulty, discrimination, guessing) –Testee’s ability (latent trait) Divided three models –Single-parameter IRT (1PL) –Two- parameter IRT (2PL) –Three-parameter IRT (3PL) 3

智慧型系統實驗室 iLab 南台資訊工程 Literature(1/8) Table 1. Computerized Test Comparison 4 Type Computer Based Tests (CBT) Computerized Adaptive Tests (CAT) Rationale Classical Test Theory (CTT) Item Response Theory (IRT) Advantage Computer-aided test and scoring ‚Reduce test error Depending on the ability to give tests ‚Fewer number of quiz will be able to estimate the ability and precision Disadvantage Test presentation method is fixed Can’t go back to check and modify the answer

智慧型系統實驗室 iLab 南台資訊工程 Literature(3/8) Three-Parameter Logistic Model (3PL) 5 : correct possibility as testee’s answers item : testee’s ability : discrimination of item : difficulty of item : pseudo-chance of item

智慧型系統實驗室 iLab 南台資訊工程 Experiment(1/4) Item Exposure Rate Control −Select 100, 500, 1000 testees and different-sized databases 6

智慧型系統實驗室 iLab 南台資訊工程 Experiment(2/4) Test overlap rate under the condition of the add exposure control 7

智慧型系統實驗室 iLab 南台資訊工程 Experiment(3/4) Test Quality Select 100, 500, 1000 testees 8

智慧型系統實驗室 iLab 南台資訊工程 Experiment(4/4) Test Quality Comparison 9

智慧型系統實驗室 iLab 南台資訊工程 Conclusion(1/1) Added exposure factor slightly improved the repetition rate of the test questions exposure control help Exam size greater than 300 questions, there will be better papers in the greater quality, exam greater the test quality 10

智慧型系統實驗室 iLab 南台資訊工程 11 Thank you all for listening Thank you