The Color Glass Condensate Outstanding questions: What is the high energy limit of QCD? How do gluons and quarks arise in hadrons? What are the possible.

Slides:



Advertisements
Similar presentations
Quarkonia: theoretical overview Marzia Nardi INFN Torino III Convegno Nazionale sulla Fisica di ALICE Frascati, Novembre 2007.
Advertisements

Elliptic flow of thermal photons in Au+Au collisions at 200GeV QNP2009 Beijing, Sep , 2009 F.M. Liu Central China Normal University, China T. Hirano.
June 20, Back-to-Back Correlations in p+p, p+A and A+A Reactions 2005 Annual AGS-RHIC User's Meeting June 20, BNL, Upton, NY Ivan Vitev, LANL Ivan.
1 Jet Structure of Baryons and Mesons in Nuclear Collisions l Why jets in nuclear collisions? l Initial state l What happens in the nuclear medium? l.
Initial and final state effects in charmonium production at RHIC and LHC. A.B.Kaidalov ITEP, Moscow Based on papers with L.Bravina, K.Tywoniuk, E.Zabrodin.
Direct Photon Production in pp collisions at the LHC Théorie LHC France 06 April 2010 IPN Lyon F.M. Liu IOPP/CCNU, Wuhan, China K. Werner Subatech, Nantes,
The Color Glass Condensate and RHIC Phenomenology Outstanding questions: What is the high energy limit of QCD? How do gluons and quarks arise in hadrons?
References to Study the New Matter. Study QGP in different Centrality Most Central events (highest multiplicity), e.g. top 5% central, i.e. 5% of the.
Forward-Backward Correlations in Relativistic Heavy Ion Collisions Aaron Swindell, Morehouse College REU 2006: Cyclotron Institute, Texas A&M University.
Relativistic Heavy-Ion Collisions: Recent Results from RHIC David Hardtke LBNL.
1 D. Kharzeev Nuclear Theory BNL Alice Club, CERN TH, May 14, 2007 Non-linear evolution in QCD and hadron multiplicity predictions for the LHC.
Quark recombination in high energy collisions for different energies Steven Rose Worcester Polytechnic Institute Mentor: Dr. Rainer Fries Texas A&M University.
Forward-Backward Correlations in Heavy Ion Collisions Aaron Swindell, Morehouse College REU Cyclotron 2006, Texas A&M University Advisor: Dr. Che-Ming.
Color Glass Condensate 1.) saturation problem in HEP 2.) evolution equations 3.) basics of gluon saturation 4.) basics of CGC.
Peter SteinbergISMD2003 Experimental Status of Parton Saturation at RHIC Peter Steinberg Brookhaven National Laboratory ISMD2003, Krakow, Poland 5-11 September.
Centrality-dependent pt spectra of Direct photons at RHIC F.M. Liu 刘复明 Central China Normal University, China T. Hirano University of Tokyo, Japan K.Werner.
Direct photon production in pp and AA collisions 合肥, Dec 5 - 7, 2009 刘复明 华中师范大学粒子物理研究所 FML, T.Hirano, K.Werner, Y. Zhu, Phys.Rev.C79:014905,2009. FML,
Finite Size Effects on Dilepton Properties in Relativistic Heavy Ion Collisions Trent Strong, Texas A&M University Advisors: Dr. Ralf Rapp, Dr. Hendrik.
Cold nuclear matter effects on dilepton and photon production Zhong-Bo Kang Los Alamos National Laboratory Thermal Radiation Workshop RBRC, Brookhaven.
Lecture II. 3. Growth of the gluon distribution and unitarity violation.
New States of Matter and RHIC Outstanding questions about strongly interacting matter: How does matter behave at very high temperature and/or density?
Future Opportunities at an Electron-Ion Collider Oleg Eyser Brookhaven National Laboratory.
Quantum Black Holes and Relativistic Heavy Ions D. Kharzeev BNL 21st Winter Workshop on Nuclear Dynamics, Breckenridge, February 5-11, 2005 based on DK.
As one evolves the gluon density, the density of gluons becomes large: Gluons are described by a stochastic ensemble of classical fields, and JKMMW argue.
Initial State and saturation Marzia Nardi INFN Torino (Italy) Quark Matter 2009, Knoxville Student Day.
Parton Model & Parton Dynamics Huan Z Huang Department of Physics and Astronomy University of California, Los Angeles Department of Engineering Physics.
Glasma Definition: The matter which is intermediate between the Color Glass Condensate and the Quark Gluon Plasma It is not a glass, evolving on a natural.
U N C L A S S I F I E D 7 Feb 2005 Studies of Hadronic Jets with the Two-Particle Azimuthal Correlations Method Paul Constantin.
Jet quenching and direct photon production F.M. Liu 刘复明 Central China Normal University, China T. Hirano 平野哲文 University of Tokyo, Japan K.Werner University.
High Energy Nuclear Physics and the Nature of Matter Outstanding questions about strongly interacting matter: How does matter behave at very high temperature.
STRING COLOR FIELDS PREDICTIONS for pp at LHC C.Pajares University Santiago de Compostela Quantum Field Theory in Extreme Environments,Paris April 2009.
The CGC and Glasma: Summary Comments The CGC, Shadowing and Scattering from the CGC Inclusive single particle production J/Psi Two Particle Correlations.
Future Perspectives on Theory at RBRC Color Glass Condensate: predictions for: "ridge", elliptical flow.... Quark-Gluon Plasma: fluctuations, effects of.
The quest for the holy Grail: from Glasma to Plasma Raju Venugopalan CATHIE-TECHQM workshop, Dec , 2009 Color Glass Condensates Initial Singularity.
General Discussion some general remarks some questions.
Diffractive structure functions in e-A scattering Cyrille Marquet Columbia University based on C. Marquet, Phys. Rev. D 76 (2007) paper in preparation.
Relativistic Heavy Ion Collider and Ultra-Dense Matter.
Color glass condensate in dense quark matter and off-diagonal long range order of gluons A. Iwazaki (Nishogakusha-u) Success of an effective theory of.
Color Glass Condensate HIM MEETING( 광주 ) Dec. 4, 2004.
Marzia Nardi CERN – Th. Div. Hadronic multiplicity at RHIC and LHC Hadronic multiplicity at RHIC and LHC Korea-EU ALICE Collab. Oct. 9, 2004, Hanyang Univ.,
Elementary interactions and cold nuclear matter at RHIC Bjørn H. Samset Dr. student., UiO (In melting the nucleus, did we break some stained glass windows?)
CGC Glasma Initial Singularity sQGPHadron Gas Theory Summary* QM 2006 Shanghai, China Art due to Tetsuo Hatsuda and Steffen Bass (with some artistic interpretation)
Jet Jet Tomography of Hot & Dense Matter Xin-Nian Wang LBNL, June 25, 2003.
Shear and Bulk Viscosities of Hot Dense Matter Joe Kapusta University of Minnesota New Results from LHC and RHIC, INT, 25 May 2010.
BFKL equation at finite temperature Kazuaki Ohnishi (Yonsei Univ.) In collaboration with Su Houng Lee (Yonsei Univ.) 1.Introduction 2.Color Glass Condensate.
The Color Glass Condensate and Glasma What is the high energy limit of QCD? What are the possible form of high energy density matter? How do quarks and.
Olena Linnyk Charmonium in heavy ion collisions 16 July 2007.
Color Glass Condensate in High Energy QCD Kazunori Itakura SPhT, CEA/Saclay 32 nd ICHEP at Beijing China 16 Aug
HIM06-12 SHLee1 Some Topics in Relativistic Heavy Ion Collision Su Houng Lee Yonsei Univ., Korea 1.J. P. Blaizot 2.J. Kapusta 3.U. A. Wiedemann.
QM2008 Jaipur, India Feb.4– Feb. 10, STAR's Measurement of Long-range Forward- backward Multiplicity Correlations as the Signature of “Dense Partonic.
Implications for LHC pA Run from RHIC Results CGC Glasma Initial Singularity Thermalized sQGP Hadron Gas sQGP Asymptotic.
Theory at the RIKEN/BNL Research Center initial state "Glasma" "Quark-Gluon Plasma" hadrons Cartoon of heavy ion collisions at high energy: (Now: RHIC.
Peter SteinbergISMD2003 Experimental Status of Parton Saturation at RHIC Peter Steinberg Brookhaven National Laboratory Forward RHIC October.
1 Small x and Forward Physics in pp/pA at RHIC STAR Forward Physics FMS Steve Heppelmann Steve Heppelmann Penn State University STAR.
Elliptic flow from initial states of fast nuclei. A.B. Kaidalov ITEP, Moscow (based on papers with K.Boreskov and O.Kancheli) K.Boreskov and O.Kancheli)
Review of ALICE Experiments
Introduction to pQCD and TMD physics
Recontres de Moriond, March
Multiple parton interactions in heavy-ion collisions
Physics with Nuclei at an Electron-Ion Collider
Workshop on the physics of HL-LHC, and perspectives at HE-LHC
QCD (Quantum ChromoDynamics)
Heavy-Flavour Physics in Heavy-Ion Collisions
Color Glass Condensate : Theory and Phenomenology
Properties of the Quark-Gluon Plasma
Lecture 2: Invariants, cross-section, Feynman diagrams
New d+Au RHIC data show evidence for parton saturation
From Particle Data Book
Introduction of Heavy Ion Physics at RHIC
Hadron Multiplicity from Color Glass Condensate at LHC
Presentation transcript:

The Color Glass Condensate Outstanding questions: What is the high energy limit of QCD? How do gluons and quarks arise in hadrons? What are the possible forms of high density matter? Claim: CGC is a universal form of strongly interacting matter which controls the high energy limit of QCD, and form which the gluons and quarks arise in this limit. 1

2 How do we think about a high energy hadron? Work in fast moving frame: High Energy Limit is Small x Limit

Wavefunction has: 3 quarks 3 quarks plus 1 gluon 3 quarks plus 2 gluon ……. 3 quarks plus many gluons The Gluon Wall: Important matrix elements at high energies have lots of gluons in them 3

4 In RHIC Collisions Au-Au at 100GeV/Nucleon in each beam About 1000 slow moving (small x) particles are made in central collisions

Where do all the gluons go? Cross sections for hadrons rise very slowly with energy But the gluon density rises much more rapidly ! The high energy limit is the high gluon density limit. Surely the density must saturate for fixed sizes of gluons at high energy. 5

6 What is the Color Glass Condensate? Glue at large x generates glue at small x Glue at small x is classical field Time dilation -> Classical field is glassy High phase space density -> Condensate Phase space density: Attractive potentialRepulsive interactions Density as high as it can be Because the density is highis small is big

7 There must be a renormalization group The x which separates high x sources from small x fields is arbitrary Phobos multiplicity data High energy QCD “ phase ” diagram

8 Why is the Color Glass Condensate Important? It is a new universal form of matter: Matter: Carries energy; Separation of gluons is small compared to size of system; Number of gluons is large New: Can only be made and probed in high energy collsions Universal: Independent of hadron, renormalization group equations have a universal solution. Universality Fundamental It is a theory derived from first principles in QCD of: Origin of glue and sea quarks in hadrons Cross sections Initial conditions for formation of Quark Gluon Plasma in heavy ion collisions

9 What does a sheet of Colored Glass look like? On the sheetis small Independent of big small Density of gluons per unit area Lienard-Wiechart potentials Random Color

10 The Color Glass Condensate Explains Growth of Gluons at Small x Renormalization group equation predicts: Gluon pile up at fixed size until gluons with strength act like a hard sphere Once one size scale is filled Move to smaller size scale Typical momentum scale grows

11 The CGC Explains Slow Growth of Total Cross Section Transverse distribution of gluons: Transverse profile set by initial conditions Size is determined when probe sees a fixed number of particles at some transverse distance

12 CGC Explains Qualitative Features of Electron-Hadron Scattering Function only of a particular combination of Q and x  Scaling relation Works for Can successfully describe quark and gluon distributions at small x and wide range of Q Q is resolution momentum of photon, x is that of struck quark

13 CGC Gives Initial Conditions for QGP in Heavy Ion Collisions Two sheets of colored glass collide Glass melts into gluons and thermalize QGP is made which expands into a mixed phase of QGPand hadrons Mystery: The QGP is very strongly interacting: Arnold and Moore suggest heating may be due to instabilities in melting CGC

14 CGC predicted particle production at RHIC Proportionality constant can be computed.

15 CGC provides a theory of shadowing (modification of quark and gluon distributions in nuclei) Two effects: Multiple scattering: more particles at high pT CGC modification of evolution equations => less particles

16 Data from dA collisions at RHIC Consistent with CGC Look for fragments of deuteron since they measure them smallest x properties of the nucleus Back to back jet correlations seen in STAR? Detailed studies of x dependence?

What are the Quasi Particles of the Glass? Regge (with Gorbachov) Pomerons: Two gluon C even state Reggeons: Multiple gluon, multiple quark states Odderon: C odd three gluon state; Pomeron gives imaginary part of T matrix and odderon real part at high energy Quasi-particles are excellent probes of properties of a media. Quasi particles of the glass are pomeron, odderon, reggeon etc. Were inferred long ago from scattering matrix theory. Computable small fluctuation of color glass Can be probed in pp, pA and eA interactions. Polarized scattering a good probe. 17

18 Exciting times for theory: Beginning of a complete description of high energy limit of QCD Must understand the collective excitations of the CGC: pomerons, reggeons, odderons … Need to understand interactions of these collective excitations: ploops or Pomeron loops Relationships with universal behavior of nucleation models. Solitons More ……..