Applications of Micro-TPC to Dark Matter Search 1. WIMP signatures 2. Performance of the Micro-TPC 3. WIMP-wind measurement 4. Future works 5. Conclusions.

Slides:



Advertisements
Similar presentations
The PICASSO experiment - searching for cold dark matter
Advertisements

Bubble Chambers: Old Tools In New Searches For Dark Matter Geoffrey Iwata Physics /16/10.
Possible merits of high pressure Xe gas for dark matter detection C J Martoff (Temple) & P F Smith (RAL, Temple) most dark matter experiments use cryogenic.
The XENON Project A 1 tonne Liquid Xenon experiment for a sensitive Dark Matter Search Elena Aprile Columbia University.
Recent Progress on D3 - The Directional Dark Matter Detector
Proportional Light in a Dual Phase Xenon Chamber
I. Giomataris Large TPCs for low energy rare event detection NNN05 Next Generation of Nucleon Decay and Neutrino Detectors 7-9 April 2005 Aussois, Savoie,
DRIFT II & DTM recent work 2010/11 UK: Sheffield, Edinburgh, STFC AIM: Directional Detection of WIMP Dark Matter - Identify a Galactic Signal US: Occidental,
C.Woody, PHENIX Upgrades, 11/10/00 A TPC for PHENIX ?? No, surely you must mean for STAR…. PHENIX, really …. ??? You must be NUTS !!! Well, wait a minute...
I. Giomataris NOSTOS Neutrino studies with a tritium source Neutrino Oscillations with triton neutrinos The concept of a spherical TPC Measurement of.
A Direction Sensitive Dark Matter Detector
Status of DRIFT II Ed Daw representing the DRIFT collaboration: Univ. of Sheffield, Univ. of Edinburgh, Occidental College, Univ. of New Mexico Overview.
TAUP2007, Sendai, 12/09/2007 Vitaly Kudryavtsev 1 Limits on WIMP nuclear recoils from ZEPLIN-II data Vitaly A. Kudryavtsev Department of Physics and Astronomy.
J.T. White Texas A&M University SIGN (Scintillation and Ionization in Gaseous Neon) A High-Pressure, Room-Temperature, Gaseous-Neon- Based Underground.
Future Planning of Dark Matter Search with Nuclear Emulsion Naka Nagoya university.
Dark Matter Search with Direction Sensitive Scintillators NOON2004 Work Shop February 14, 2004, Odaiba H. Sekiya University of Tokyo M.Minowa, Y.Shimizu,
Neutron scattering systems for calibration of dark matter search and low-energy neutrino detectors A.Bondar, A.Buzulutskov, A.Burdakov, E.Grishnjaev, A.Dolgov,
TPC R&D status in Japan T. Isobe, H. Hamagaki, K. Ozawa, and M. Inuzuka Center for Nuclear Study, University of Tokyo Contents 1.Development of a prototype.
Iwha Womans University 2005/04/22 Hyunsu Lee & Jungwon Kwak Current Limit of WIMP search with CsI(Tl) crystal in KIMS 이현수 *, 곽정원, 김상열, 김선기, 김승천,
J.T. White Texas A&M University SIGN (Scintillation and Ionization in Gaseous Neon) A High-Pressure, Room- Temperature, Gaseous-Neon-Based Underground.
Future work Kamioka Kyoto We feel WIMP wind oh the earth NEWAGE ~ Direction Sensitive Direct Dark Matter Search ~ Kyoto University Hironobu Nishimura
K. Miuchi K. Miuchi July 10, 2008 Dark Matter and Dark Energy Direction-Sensitive Dark Matter Search --NEWAGE-- Kentaro Miuchi (Kyoto University) (New.
NEWAGE Hironobu Nishimura ( Kyoto University) K. Miuchi T. Tanimori, H. Kubo, S. Kabuki, A. Takada, K. Hattori, K. Ueno, S. Kurosawa, T.Ida, S.Iwaki A.
方向に感度を持つ検出器での 暗黒物質探索 ~ NEWAGE project ~ 京都大学 理学研究科 助 手 身内賢太朗 With μ-PIC 開発グループ 谷森達、窪 秀利 竹田敦、永吉勉、 折戸玲子、植野優、 高田淳史、岡田葉子 Direction Sensitive WIMP-search with.
Taking a Razor to Dark Matter Parameter Space (at the LHC) Chiu-Tien Yu (UW-Madison/Fermilab) with Paddy Fox, Roni Harnik, and Reinard Primulando arXiv:
Diego Gonzalez Diaz (Univ. Zaragoza and CERN)
The Tokyo Dark Matter Experiment NDM03 13 Jun. 2003, Nara Hiroyuki Sekiya University of Tokyo.
マイクロメッシュを用いた 高増幅率型 μ-PIC の開発 Development of  -PIC using micro mesh 1. Introduction 2. Test operation of prototype 3. Simulation studies 4. Summary 神戸大学.
Performance and applications of a  -TPC K. Miuchi a†, H. Kubo a, T. Nagayoshi a, Y. Okada a, R. Orito a, A. Takada a, A. Takeda a, T. Tanimori a, M. Ueno.
I. Giomataris NOSTOS a new low energy neutrino experiment Detect low energy neutrinos from a tritium source using a spherical gaseous TPC Study neutrino.
KPS Chonbuk University 2005/10/22 HYUNSU LEE Status of the KIMS dark matter search experiment with CsI(Tl) crystals Hyun Su Lee Seoul National.
Dark Matter Search with Direction Sensitive Scintillators The10th ICEPP Symposium February 16, 2004, Hakuba H. Sekiya University of Tokyo.
Vergados DSU11 29/09/11 Direct Dark Matter Searches- Exploiting its Various Signatures J.D. Vergados J.D. Vergados University of Ioannina, Ioannina, Greece.
WIMP search Result from KIMS experiments Kim Seung Cheon (DMRC,SNU)
? At Yangyang beach, looking for something in the swamp of particles and waves. 1 The recent results from KIMS Seung Cheon Kim (Seoul National University)
1/27/2016Katsushi Arisaka 1 University of California, Los Angeles Department of Physics and Astronomy Katsushi Arisaka XAX 10.
Electron tracking Compton camera NASA/WMAP Science Team  -PIC We report on an improvement on data acquisition for a Time Projection Chamber (TPC) based.
Kamioka Kyoto We feel WIMP wind on the earth NEWAGE Direction-sensitive direct dark matter search with μ-TPC * 1.Dark.
Current status of XMASS experiment 11 th International Workshop on Low Temperature Detectors (LTD-11) Takeda Hall, University of Tokyo, JAPAN 8/1, 2005.
DARK MATTER SEARCH Carter Hall, University of Maryland.
I. Giomataris, CEA-Irfu-France
1 Status and background considerations of XMASS experiment Yeongduk Kim Sejong University for the XMASS collaboration LRT2006 Oct. 3, 2006.
Dark Matter Search with μTPC ( powerd by μPIC ) Micro Pattern Gas Detector 研究会 2004 年 12 月 3 日 京都大学 関谷洋之 京都大学.
P.F.Ermolov SVD-2 status and experimental program VHMP 16 April 2005 SVD-2 status and experimental program 1.SVD history 2.SVD-2 setup 3.Experiment characteristics.
A. SarratILC TPC meeting, DESY, 15/02/06 Simulation Of a TPC For T2K Near Detector Using Geant 4 Antony Sarrat CEA Saclay, Dapnia.
Second Workshop on large TPC for low energy rare event detection, Paris, December 21 st, 2004.
The digital TPC: the ultimate resolution P. Colas GridPix: integrated Timepix chips with a Micromegas mesh.
PyungChang 2006/02/06 HYUNSU LEE CsI(Tl) crystals for WIMP search Hyun Su Lee Seoul National University (For The KIMS Collaboration)
Detecting the Directionality of Dark Matter via “Columnar Recombination” (CR) Technique An attractive, natural candidate for Dark Matter is the WIMP –
D 3 - Directional Dark Matter Detector Sven Vahsen (U. Hawaii)1 Berkeley Lab Hawaii LBNL Hawaii Investigating feasibility of directional DM search w/ micro-pattern.
A. Takada (Kyoto University)  Our motivation   -PIC and MeV gamma-ray telescope   -PIC applications  New type  -PIC.
Limits on Low-Mass WIMP Dark Matter with an Ultra-Low-Energy Germanium Detector at 220 eV Threshold Overview (Collaboration; Program; Laboratory) Physics.
Slides for IG NewS : GG – analysis june juin 2016 Spherical detector: recent developments I. Giomataris, CEA-Irfu-France Spherical detector at.
18-20 May 2015, Underground Science Conference, SDSM&T 1John Harton, Colorado State University Recent Results from the DRIFT Directional DM Experiment.
WIMPs Direct Search with Dual Light-emitting Crystals Xilei Sun IHEP International Symposium on Neutrino Physics and Beyond
MIMAC MIcro-tpc MAtrix of Chambers ( 3He + CF4) A Large TPC for non baryonic Dark Matter search Daniel Santos Laboratoire de Physique Subatomique et.
MIcro-tpc Matrix of Cells of He3
GEM, applications for SR experiments and tracking in HEP
Ben Morgan & Anne Green University of Sheffield
XAX Can DM and DBD detectors combined?
Non-Baryonic Dark Matter: From the CMB and axial direct detection
A.Takada, A.Takeda, T.Tanimori
Background Reduction for Quantitative Gamma-ray Imaging with the Electron-Tracking Compton Camera in High Dose Areas May 26th, PS10A-10 T. Mizumoto,
Dark Matter Search with Stilbene Scintillator
Status of Neutron flux Analysis in KIMS experiment
Detecting WIMPs using Au-DNA Microarrays
Yue, Yongpyung, Korea Prospects of Dark Matter Search with an Ultra-Low Threshold Germanium Detector Yue, Yongpyung, Korea
The Estimated Limits For A 5g LE-Ge Detector
Directional Detection Rates of Dark Matter (WIMPs)
Sven Vahsen, CYGNUS physics meeting
Presentation transcript:

Applications of Micro-TPC to Dark Matter Search 1. WIMP signatures 2. Performance of the Micro-TPC 3. WIMP-wind measurement 4. Future works 5. Conclusions Jun. 13, 2003 Atsushi Takeda for the μ-PIC group

1. WIMP signatures Annual modulation Very hard to see… Movement of the earth Expected spectra rate difference is a few % BGs themselves are likely to have it based on the motion of the earth around the sun

WIMP-wind Strongly peaked in the Cygnus direction WIMP-wind blowing from the direction of the solar motion A directional sensitive detector is needed WIMP-wind distribution

2. Performance of the Micro-TPC Micro Pixel Chamber (μ-PIC) Micro Pixel Chamber (μ-PIC) Micro-TPC Micro-TPC μ-PIC: X, Y TPC: Z (drift time) 3D tracking Schematic structure of the μ-PIC Micro-TPC = μ-PIC + TPC Micro pattern gas detector Fine position resolution (400 μm pitch) 2D imaging

10×10cm 2 Pictures of the Micro-TPC Pictures of the Micro-TPC 10×10cm 2 μ-PIC readout TPC TPC gas package 10×10×8cm 3 Micro-TPC has been developed

3D Tracking performance 3D Tracking performance track length > 5 mm (several points, direction) Proton tracks neutron dE/dx (Brag curves) neutron Ar : C 2 H 6 = 9 : 1 (1 atm)

252 Cf run (n+γ) dE/dx [keV/cm] χ 2 /d.o.f 30 0 neutron Na run (γ) dE/dx [keV/cm]500 χ 2 /d.o.f 30 γ-ray discrimination vs dE/dx plot χ 2 vs dE/dx plot neutron events have large dE/dx straight track neutron ( 14 / 500 events ) >95% γ-rays were discriminated n efficiency ~ 1 n efficiency ~ 1 (511 keV γ)

3. WIMP-wind measurement with Micro-TPC Merit recoil track and direction γ-ray discrimination fine pitch (400μm) ⇔ DRIFT(2mm) Mass production Demerit low mass (gas detector)

Target gas Spin-dependent (SD): CF 4, Xe Spin-independent (SI): Xe Gas pressure, target mass threshold: 40 keV track: 5 mm gas Pressure [Torr] Density [g/m 3 ] dE/dx [keV/cm] CF Xe (μ- PIC threshold : 50keV/cm) OK pressure ~ 10×1m 3 detector is needed

~ 10×1m 3 detector prototype : 30×30×30cm 3 large area μ-PIC : 50×50×50cm 3 ×8 = 1m 3 ×8 = 1m 3 1m 3 ×10 μ-PIC drift plane ×8 electronics 1 m 3 volume ×10 modules 50cm 50cm 50cm modularize

spectrum threshold forward/backward >10 Expected signals for SD interaction for SD interaction gas: CF 4 WIMP-p: 0.1 pb recoil asymmetry forward backward WIMP WIND γ F

cos γ more than 5σ asymmetry CF 4 detection possibility CF 4 detection possibility Backgrounds: fast neutron 2×10 -5 cm -2 s ⇒ 0.1 cpd/kg/keV for CF4 (10cm water shield) ⇒ 1600 BG events / 10m×1yr ⇒ 0.1 cpd/kg/keV for CF4 (10cm water shield) ⇒ 1600 BG events / 10m 3 ×1yr / 10m×1yr WIMPs: 260 events / 10m 3 ×1yr

Estimated detection possibility Estimated detection possibility 5σ2σ SISD Xe 10 m 3, 1 year noshield 5σ Xe 30 m 3, 3 years 35cm water shield CF 4 10 m 3, 1 year noshield CF 4 30 m 3, 3 years 35cm water shield 5σ 2σ

4. Future works Gas study CF 4 properties Background study γ-ray discrimination Study of the diffusion effect influence on the sensitivity influence on the sensitivity Energy Calibration track length v.s. energy

5. Conclusions WIMP-wind measurement idea : NOT NEW idea : NOT NEW μ-PIC has a fine pitch (400 μm) μ-PIC has a fine pitch (400 μm)Micro-TPC sensitive to SD and SI factor 10 forward/backward asymmetry CF 4 5σ detection possibility precise studies to do

diffusion for 50×50×50cm 3 Micro-TPC diffusion for 50×50×50cm 3 Micro-TPC ~ 10 cm/μsec 50 cm t ~ 5μsec drift velocity of e - in pure CF 4 D: diffusion coefficient t: drift time diffusion coefficient: D ~ 1.5×10 -3 cm 2 /μsec ~ 2 mm It’s not so large

Preamplifier - ATLAS amplifier shaper discriminator (ASD) chip (64ch/card) - ATLAS amplifier shaper discriminator (ASD) chip (64ch/card) 7.7 Mcps X-ray intensity[mA] DAQ rate[MHz] cm 40cm Readout electronics Readout electronics Position encoding module - 5 FPGAs 40MHz clock

track direction is important track only track+direction F/B ~ 5 F/B ~ 1.3

Expected rate threshold: 40keV WIMP mass: 50 GeV for F, Ar 100GeV for Xe WIMP mass: 50 GeV for F, Ar 100GeV for Xe WIMP- p cross section : 0.1 pb for SD pb for SI gas pressure [torr] density [g/m 3 ] rate [cpd/kg] Event (10m 3 ×1yr) CF Ar Xe(SD) Xe (SI)

S/N calculation threshold: 40keV WIMP mass: 50 GeV for F, Ar 100GeV for Xe WIMP mass: 50 GeV for F, Ar 100GeV for Xe WIMP- p cross section : 0.1 pb for SD pb for SI gas Event (30m 3 ×3yr) F/B ratio Modulation(σ) n BG ×1/100 CF σ40σ Ar σ3σ Xe(SD)1350.1σ1σ Xe (SI) σ5σ

Expected 95 % C.L. sensitivities Spin-DependentSpin-Independent Xe 30 m 3, 3 years 35cm water shield Xe 10 m 3, 1 year noshield CF 4 10 m 3, 1 year noshield CF 4 30 m 3, 3 years 35cm water shield

spectrum Threshold dependency of F/B gas: CF 4 WIMP-p: 0.1 pb forward/backward increases with the increases with the threshold energy threshold energy