SiPM を用いたシンチレーションカウンターによる 細分化ポジトロン時間測定器のビーム試験結果 西村美紀 ( 東大 ) 内山雄祐(素セ)、大谷航(素セ)、 M. de Gerone ( Genova Univ. )、 Flavio Gatti(Genova Univ.) 、調翔平(九 大) 他 MEGコラボレーション.

Slides:



Advertisements
Similar presentations
MEG 実験 液体キセノンカロリメータ におけるエネルギー分解能の追究 東大素粒子センター 金子大輔 他 MEG コラボレーション.
Advertisements

村松憲仁 東北大学電子光理学研究センター ELPH研究会 「素粒子・原子核実験における全吸収型 カロリメータの実例と応用」 2015年3月10日 BNL-E787/E949 実験で用いた エンドキャップ純 CsI ガンマ線検出器 1 興味のある方は I-H. Chiang et al., IEEE Trans.
Performance of MPPC using laser system Photon sensor KEK Niigata university, ILC calorimeter group Sayaka IBA, Hiroaki ONO, Paul.
Study of Photon Sensors using the Laser System 05/7/12 Niigata University, Japan Sayaka Iba, Editha P. Jacosalem, Hiroaki Ono, Noriko.
MEG実験アップグレードに向けたMPPC読み出しによる 新しいタイミングカウンターの研究開発
INFN of Genova, Pavia and Roma Flavio Gatti, PSI, February 9 th, Timing Counter status Timing Counter status.
Mass test of MPPC with a prototype of MEG II liquid xenon detector
MEG 実験 陽電子スペクトロメータの 性能と今後の展望 Yuki Fujii On behalf of the MEG collaboration JPS Hirosaki University 17 th Sep /9/17 日本物理学会@弘前大学 1.
Design and test of a high-speed beam monitor for hardon therapy H. Pernegger on behalf of Erich Griesmayer Fachhochschule Wr. Neustadt/Fotec Austria (H.
Genova/Pavia/Roma Flavio Gatti, PSI, July 1st, Timing Counter july 2004.
MEG II 実験液体キセノンガンマ線検出器 における再構成法の開発 Development of the event reconstruction method for MEG II liquid xenon gamma-ray detector 小川真治、 他 MEG II
Upgrade of liquid xenon gamma-ray detector in MEG experiment Daisuke Kaneko, the University of Tokyo, on behalf of the MEG collaboration MEG EXPERIMENT.
The Transverse detector is made of an array of 256 scintillating fibers coupled to Avalanche PhotoDiodes (APD). The small size of the fibers (5X5mm) results.
Report on SiPM Tests SiPM as a alternative photo detector to replace PMT. Qauntify basic characteristics Measure Energy, Timing resolution Develop simulation.
Mar Toshiyuki Iwamoto (ICEPP) JPS 2010 Spring meeting, Okayama University1 MEG 実験による   e  探索 Run2009 東京大学素粒子物理国際研究センター 岩本敏幸 他 MEG コラボレーション.
Evaluation of Silicon Photomultiplier Arrays for the GlueX Barrel Calorimeter Carl Zorn Radiation Detector & Medical Imaging Group Jefferson Laboratory,
2 1/March/2015 日本物理学会大70回年次大会@早稲田大学 東大ICEPP 内山雄祐 他 MEG II collaboration.
14/02/2007 Paolo Walter Cattaneo 1 1.Trigger analysis 2.Muon rate 3.Q distribution 4.Baseline 5.Pulse shape 6.Z measurement 7.Att measurement OUTLINE.
MEG 実験におけるミュー粒子放射崩壊の 測定と利用 日本物理学会第67回年次大会 ICEPP, the University of Tokyo 内山 雄祐.
The MPPC Study for the GLD Calorimeter Readout Introduction Measurement of basic characteristics –Gain, Noise Rate, Cross-talk Measurement of uniformity.
Scintillation hodoscope with SiPM readout for the CLAS detector S. Stepanyan (JLAB) IEEE conference, Dresden, October 21, 2008.
MEG II 実験のための 陽電子タイミングカウンターの開発 PSI でのハイレートビーム試験 Development of Positron Timing Counter with SiPM for MEG-II Experiment Beam Test Result in the high rate.
MEG II 実験 液体キセノンガンマ線検出器に用いる 光検出器 MPPC の 実装に向けた最終試験 家城 佳 他 MEG II collaboration + 九大の方々.
MEG 2009 現状と展望 東京大学素粒子物理国際研究センター 岩本敏幸 他 MEG コラボレーション 日本物理学会 2009 年秋季大会 甲南大学岡本キャンパス.
PANDA Anton A. Izotov, Gatchina A.A.Izotov, Gatchina, PANDA Forward TOF Walls. Side TOF walls in dipole Magnet SiPM/PMT187.
1 MEG 陽電子タイミングカウンタの ビーム中での性能評価と 解析方法の研究 * 内山雄祐 東大素粒子セ, INFN-Genova A, INFN-Pavia B 森俊則 F. Gatti. A,S.Dussoni A,G.Boca B,P.W.Cattaneo B, 他 MEG Collaboration.
TOP counter overview and issues K. Inami (Nagoya university) 2008/7/3-4 2 nd open meeting for proto-collaboration - Overview - Design - Performance - Prototype.
MEG 実験用液体キセノン検出器の現状 東京大学素粒子物理国際研究センター 澤田龍 他 MEG カロリメータグループ 2007 年 9 月 24 日 日本物理学会 第 62 回年次大会 北海道大学.
MEG II 実験のための SiPM を用いた 陽電子タイミングカウンターのシミュレーションによる性能評価 Development of the waveform simulation for Positron Timing Counter with SiPM for MEG II Experiment.
MEG II 実験のための 陽電子タイミングカウンター実機建設 Construction of Positron Timing Counter for MEG II experiment 西村美紀(東大) 他 MEGIIコラボレーション 日本物理学会 2015年 秋季大会 大阪市立大学(杉本キャンパス)
マイクロメッシュを用いた 高増幅率型 μ-PIC の開発 Development of  -PIC using micro mesh 1. Introduction 2. Test operation of prototype 3. Simulation studies 4. Summary 神戸大学.
MEG Run 2008 液体キセノンガンマ線検出器 東京大学 素粒子物理国際研究セン ター 西村 康宏、 他 MEG コラボレー ション 2008 年秋季物理学会@山形大学小白川キャンパス.
Status of photon sensor study at Niigata University -- SiPM and MPPC -- Photon sensor mini workshop 05/9/16 University Niigata University.
東大素粒子セ, PSI A, UCI B, ETH C 岩本敏幸 A, 内山雄祐, 大谷航, 小曽根健嗣 A, 澤田龍, 名取寛顕, 西口創, 久松康子, 三原智, 森俊則, 山田秀衛 B, M.Schneebeli C, S.Ritt A 内山 雄祐 日本物理学会2006年年次大会 @愛媛大・松山大.
MEG 実験 背景ガンマ線の研究 澤田 龍 MEG コラボーレーション 東京大学素粒子物理国際研究センター 2010 年 9 月 11 日 日本物理学会 2010 年秋季大会 九州工業大学戸畑キャンパス.
5-9 June 2006Erika Garutti - CALOR CALICE scintillator HCAL commissioning experience and test beam program Erika Garutti On behalf of the CALICE.
Beta-ray test for strip scintillator readout MPPC GLD Cal group KEK 06/2/28 (Tue) Niigata university Sayaka IBA.
Genova/Pavia/Roma Flavio Gatti, PSI, 11 February, Timing Counter: january 2004.
SPring-8 レーザー電子光 ビームラインでの タギング検出器の性能評価 核物理研究センター 三部 勉 LEPS collaboration 日本物理学会 近畿大学 1.レーザー電子光 2.タギング検出器 3.実験セットアップ 4.エネルギー分解能 5.検出効率とバックグラウンドレート.
MEG 実験 2009 液体キセノン検出器の性能 II 西村康宏, 他 MEG コラボレーション 東京大学素粒子物理国際研究セン ター 第 65 回年次大会 岡山大学.
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
Development of UV-sensitive MPPC for upgrade of liquid xenon detector in MEG experiment Daisuke Kaneko, on behalf of the MEG Collaboration µ γ Liquid xenon.
GSI 9Feb09 NMI3 – Integrated Infrastructure Initiative for Neutron Scattering and Muon Spectroscopy, Joint Research Activity (JRA8): MUON-S. Contract:
SiPM Workshop EU-FP7(HP3), Vienna, 16 Feb F.G. H.O. Study of scintillator detectors time resolution with different SiPM readout on T10 test beam.
Study of the MPPC for the GLD Calorimeter Readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group Kobe Introduction Performance.
M.Taguchi and T.Nobuhara(Kyoto) HPK MPPC(Multi Pixel Photon Counter) status T2K280m meeting.
TCT measurements with strip detectors Igor Mandić 1, Vladimir Cindro 1, Andrej Gorišek 1, Gregor Kramberger 1, Marko Milovanović 1, Marko Mikuž 1,2, Marko.
Performance of 1600-pixel MPPC for the GLD Calorimeter Readout Jan. 30(Tue.) Korea-Japan Joint Shinshu Univ. Takashi Maeda ( Univ. of Tsukuba)
1 The Scintillation Tile Hodoscope (SciTil) ● Motivation ● Event timing/ event building/ software trigger ● Conversion detection ● Charged particle TOF.
マイクロメッシュを用いた 三次元電場構造型μ-PICの開発
Activities and Results from PNPI GATCHINA
小川真治、 他MEG 第72回年次大会 MEG II 実験液体キセノンガンマ線検出器における取得データサイズ削減手法の開発 Development of the data size reduction method for MEG II liquid.
An Active TARget for MEG-II, a status report
An active target for MEG2, a status report
HELIX time of flight system electronics concepts
Liquid Xenon Detector for the MEG Experiment
大強度
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Timing Counter Sept CSN I, Assisi 2004 Giorgio Cecchet.
Upgrade of LXe gamma-ray detector in MEG experiment
MEG実験アップグレードに向けたSiPMを用いた ポジトロン時間測定器の研究開発
MEG実験の液体Xe検出器について 東大 ICEPP  森研究室 M1 金子大輔.
High Rate Photon Irradiation Test with an 8-Plane TRT Sector Prototype
md-NUV PET project meeting
MEG II実験 液体キセノン検出器の建設状況
Daisuke Kaneko, ICEPP, Univ. of Tokyo on behalf of MEG collaboration
西村美紀(東大) 他 MEGIIコラボレーション 日本物理学会 第73回年次大会(2018年) 東京理科大学(野田キャンパス)
The MPPC Study for the GLD Calorimeter Readout
Performance test of a RICH with time-of-flight information
Presentation transcript:

SiPM を用いたシンチレーションカウンターによる 細分化ポジトロン時間測定器のビーム試験結果 西村美紀 ( 東大 ) 内山雄祐(素セ)、大谷航(素セ)、 M. de Gerone ( Genova Univ. )、 Flavio Gatti(Genova Univ.) 、調翔平(九 大) 他 MEGコラボレーション 日本物理学会 2013 年秋季大会 高知大学 1

μ → eγ at rest Signal 52.8MeV Back-to-back Time coincidence Physics BG (radiative muon decay) <52.8MeV Any angle Time coincidence Accidental BG <52.8MeV Any angle Random Dominant 2

µ γ 液体キセノンガンマ線検出 器 立体交差ワイ ヤーポジトロン 飛跡検出器 細分型ポジトロン時間測定器 3 (detail of MEG upgrade; arXiv: )

upgrade 3 SiPMs series connection Plastic scintillator PCB Pixelated Timing Counter for MEG upgrade present For good time resolution Pixelated TC is employed. For good time resolution Pixelated TC is employed. 90 mm 40 5 a higher level of segmentation Using multiple hit time Flexible detector layout small counter with SiPM A good timing resolution Less pileup PMT Scintillator 4

MC simulation 5-8 counter hit Signal positron Average # of hit 6.6 Number of hit counters (MC)

Multiple hit scheme Requirement Good single counter resolution Single counter R&D (Uchiyama’s talk) smaller counter Hit many counters optimization counter assembly with MC larger counter ps ~5ps Resolution vs. # of hit counters (MC) Resolution (psec) 6

Resolution vs. # of hit counters (MC) Resolution (psec) Multiple hit scheme ps ~5ps ~70 ps 90x40x5 mm scintillator Average # of hit 6.6 Number of hit counters (MC) 7

R&D plan Single counter R&D Make prototype Basic characteristics Counter geometry optimization Timing counter layout study Size optimization with MC Optimize counter layout Multi counter prototype Prove multiple hit scheme by beam test Electronics test Calibration R&D Construct Uchiyama’s talk 8 done

Counter Size Optimization Average number of hit increase with taller counter. Single counter resolution is better with lower counter. Counter height (cm) Average # of hit counters (MC) 9 Single resolution at 1MeV Counter height (cm) 9 3 SiPMs series connection Plastic scintillator PCB

Counter Size Optimization 4 cm for positrons concentrating region. 5 cm for the other region. 4 cm 5 cm beam 10 target Signal positron

Beam Test in Frascati LinacCollider DAFNEBTF Damping ring 11

Beam test configuration Beam 48 MeV Positrons (1-3/bunch), bunch width of 10 ns Inside the black box Counters (90x40x5 mm, BC418) – 8 counters with HAMAMATSU (S (X), 3x3 mm2, 50μm-3600 pixels) SiPMs – 6 counters with AdvanSiD SiPMs Reference counter (5x5x5 mm, BC422, 1 HAMAMATSU SiPM) for time reference & trigger Lead-glass Calorimeter for monitoring the beam Electronics Long cable 6 DRS (digitizer) 12 1~3 e + 3 cm Black box Lead-glass Calorimeter Counters Reference counter 9.5 cm

counters Black box Beam line Reference counter Magnet Linac Single counter 13

DRS synchronization 14 Before σ=377 ps After t ch1 -t ch2 synchronize many different channels with common clock. Time jitter among counters ps

DRS synchronization synchronize many different channels with common clock. Time jitter among counters ps 15 Before σ=377 ps After Sigma 26.3 ps t ch1 -t ch2

Selection 1e + beam 2e+2e+ 3e+3e+ After cutting the 2 or more positrons events, Landau shape charge distribution is obtained. Charge distribution of 1 st counter 2e2e 3e3e Cut 1e + Select 1 positron events 16

Single counter performance Single counter resolution is consistent one with Sr source in the lab. All counter have the similar resolution ~75 ps t counter -t ref Resolution (psec) Counter # 17

Multiple Scattering e resolution ~8mm Measurement with source 18 Beam spot size

multiple counter resolution t counters -t ref (t odd –t even )/ (ns) we can obtain the resolution of 47.0 ps with 8 counters and reference counter (ns) From ( even counter average time - odd counter average time ), resolution with 8 counters of 27.5 ps can be obtained.

Multiple hit resolution Multiple hit scheme works. We obtained the better resolution with 8 counters. 20 ref. analysis Subtract reference resolution and DRS jitter which is not similar our experiment.

SiPM comparison HAMAMATSU: high PDE AdvanSiD: stable with temperature 21 Jitter reduction from multiple hit does not depend on SiPM. We must employ the counter which single resolution is better.

Summary and Prospects Pixelated TC is employed for MEG experiment upgrade – 5-8 hits pixels information gives good resolution of ps. Beam test with 8counters in Frascati. – obtain better resolution of ~30 ps with 8 counter – Multiple hit scheme is confirmed. Prospect 2013 Counter assemble optimization 2014 Calibration R&D 2014 Construct 22

BACK UP 23

TOF pixel dependence(MC) 24 Time difference is ~5ps. (without effect of support structure) Time difference

Single Pixel Study Test Counter – SiPM HAMAMATSU MPPC (S C, 3x3 mm2, 50μm-3600 pixels) – Fast plastic scintillator 90x30x5mm, BC422 – glued with optical grease (OKEN6262A) Source Sr90 (<2.28MeV, β-ray) Reference counter – 5×5×5 mm scintillator BC422 – Readout by a MPPC – Trigger, Collimate Waveform digitizer sampling (DRS developed at Voltage amplifier developed by PSI (Gain~20, 600 MHz bandwidth) Shaping with high-pass filter & pole-zero cancellation Long cable (7.4m) before amplifier KEITHLEY Pico ammeter for MPPC bias (HV), Bias 218V~222V (for series connection) 3 or 4 SiPMs Series connection 25

Parallel connection Series connection waveform Before shaping After shaping Capacitance is larger ->waveform wider [ns] [ns] Waveform is sharper. We can obtain good resolution [mV] [mV] 26

Series vs. parallel connection Parallel We can’t apply bias voltage to each MPPC. We should choose MPPCs which have the same characteristic. Capacitance ↑ -> waveform wider Series Automatically bias voltage is adjusted. Waveform is sharper. Series connection gives us better results. 27

Analysis t rise ~1.7 ns baseline restoration by the pole-zero preamp 28

Single Pixel R&D Position scan Optimization – Size length(60-120mm), width(3.5-5 mm), height(30, 40 mm) – Scintillators BC422, BC420, BC418 – Manufacture of SiPM HAMAMATSU, KETEK, AdvanSiD – Reflector Aluminized Mylar, Teflon tape, 3M radiant mirror Single Pixel R&D with source is almost done!! We could obtain the satisfying result about single pixel. Single Pixel R&D with source is almost done!! We could obtain the satisfying result about single pixel. 29

present upgrade COBRA DC TC 30

Resolution and efficiencies for MEG upgrade 31

Upgrade summary 32

HAMAMATSU Manufacture of SiPM (Preliminary) HAMAMATSU SiPMs give us the best resolution. KETEK AdvanSiD Best resolution ~ 58 ps ~ 65 ps ~ 75 ps 33

Scintillator Type Test BC418, 420, and 422 which is 90x40x5mm with 4MPPCs 34 Scintillator TypeSingle Resolution (ps) BC BC BC Properties of ultra-fast plastic scintillators from Saint-Gobain

Waveform signal -> sine wave -> 35

Size Optimization Single resolution is worse with larger pixel. However # of hit pixel increases with larger pixels. 3cm height measured MC 36

Result of size optimization Larger pixel is better. (Effect of high rate is not included.) better MC 37

Counter Height Pixels; z => Change pixel height 3 cm – 5 cm 38 3 cm 4 cm 5 cm Pixel height affects small z hit number. => It is good to change the counter height with z position.