GOES-R ABI PROXY DATA SET GENERATION AT CIMSS Mathew M. Gunshor, Justin Sieglaff, Erik Olson, Thomas Greenwald, Jason Otkin, and Allen Huang Cooperative.

Slides:



Advertisements
Similar presentations
Overview of GOES and MTSAT Platforms: Fire Monitoring Characteristics
Advertisements

Transitioning unique NASA data and research technologies to operations GOES-R Proving Ground Activities at the NASA Short-term Prediction Research and.
The Utility of GOES-R and LEO Soundings for Hurricane Data Assimilation and Forecasting Jun Timothy J. Schmit #, Hui Liu &, Jinlong and Jing.
Proxy ABI datasets relevant for fire detection that are derived from MODIS data Scott S. Lindstrom, 1 Christopher C. Schmidt 2, Elaine M. Prins 2, Jay.
McIDAS-V Support for the GOES-R Program William Straka 1, Tom Rink 1, Tom Achtor 1, Tim Schmit 2, Kaba Bah 1, Joleen Feltz 1 1 CIMSS/SSEC, University of.
UW-CIMSS/UAH MSG SEVIRI Convection Diagnostic and Nowcasting Products Wayne F. Feltz 1, Kristopher M. Bedka 1, and John R. Mecikalski 2 1 Cooperative Institute.
GOES-R AEROSOL PRODUCTS AND AND APPLICATIONS APPLICATIONS Ana I. Prados, S. Kondragunta, P. Ciren R. Hoff, K. McCann.
Joe Sienkiewicz 1, Michael Folmer 2 and Hugh Cobb 3 1 NOAA/NWS/NCEP/OPC 2 University of Maryland/ESSIC/CICS 3 NOAA/NWS/NCEP/NHC/ Tropical Analysis and.
GOES-R Synthetic Imagery over Alaska Dan Lindsey NOAA/NESDIS, SaTellite Applications and Research (STAR) Regional And Mesoscale Meteorology Branch (RAMMB)
Introduction and Methodology Daniel T. Lindsey*, NOAA/NESDIS/STAR/RAMMB Louie Grasso, Cooperative Institute for Research in the Atmosphere
THE GOES-R SERIES ADVANCED BASELINE IMAGER (ABI) UW-Madison Timothy J. Schmit NOAA/NESDIS/ORA Advanced Satellite Products Team (ASPT) James J Gurka NOAA/NESDIS/OSD.
UNCLASSIFIED Navy Applications of GOES-R Richard Crout, PhD Naval Meteorology and Oceanography Command Satellite Programs Presented to 3rd GOES-R Conference.
Remote sensing of aerosol from the GOES-R Advanced Baseline Imager (ABI) Istvan Laszlo 1, Pubu Ciren 2, Hongqing Liu 2, Shobha Kondragunta 1, Xuepeng Zhao.
1 CIMSS Participation in the Development of a GOES-R Proving Ground Timothy J. Schmit NOAA/NESDIS/Satellite Applications and Research Advanced Satellite.
Thanks also to… Tom Wrublewski, NOAA Liaison Office Steve Kirkner, GOES Program Office Scott Bachmeier, CIMSS Ed Miller, NOAA Liaison Office Eric Chipman,
The GOES-R Algorithm Working Group (AWG) program requests a high quality of proxy data for algorithm developments, testing and assessments. The central.
GOES-R ABI New Product Development Donald W. Hillger NOAA/NESDIS, SaTellite Applications and Research (STAR) Regional And Mesoscale Meteorology Branch.
PLANS FOR THE GOES-R SERIES AND COMPARING THE ADVANCED BASELINE IMAGER (ABI) TO METEOSAT-8 UW-Madison James J Gurka, Gerald J Dittberner NOAA/NESDIS/OSD.
1 CIMSS Participation GOES-R Proving Ground Status January 2011 UW-Madison Contributors to this presentation: Tim Schmit, Wayne Feltz, Jordan Gerth, Scott.
GOES-R ABI Synthetic Imagery at 3.9 and 2.25 µm 24Feb2015 Poster 2 Louie Grasso, Yoo-Jeong Noh CIRA/Colorado State University, Fort Collins, CO
Advanced Baseline Imager (ABI) will be flown on the next generation of NOAA Geostationary Operational Environmental Satellite (GOES)-R platform. The sensor.
GOES–R Applications for the Assessment of Aviation Hazards Wayne Feltz, John Mecikalski, Mike Pavolonis, Kenneth Pryor, and Bill Smith 7. FOG AND LOW CLOUDS.
Significant contributions from: Todd Schaack and Allen Lenzen (UW-Madison, Space Science and Engineering Center) Mark C. Green (Desert Research Institute)
On the Use of Geostationary Satellites for Remote Sensing in the High Latitudes Yinghui Liu 1, Jeffrey R. Key 2, Xuanji Wang 1, Tim Schmit 2, and Jun Li.
60 West – A Wisconsin Perspective Timothy J. Schmit Gary S. Wade NOAA/NESDIS/STAR Advanced Satellite Products Branch (ASPB) Madison, WI GOES-10:
Improvements of the Geostationary Operational Environmental Satellites (GOES)-R series for Climate Applications GOES-R data and products will support applications.
The GOES-10 Overview UW-Madison Tim Schmit and Gary Wade Research Satellite Meteorologist NOAA/NESDIS/ORA(STAR) Advanced Satellite Products Branch (ASPB)
Cooperative Institute for Meteorological Satellite Studies University of Wisconsin - Madison ABI and AIRS Retrievals in McIDAS-V Kaba Bah.
Near-Real-Time Simulated ABI Imagery for User Readiness, Retrieval Algorithm Evaluation and Model Verification Tom Greenwald, Brad Pierce*, Jason Otkin,
Hyperspectral Infrared Alone Cloudy Sounding Algorithm Development Objective and Summary To prepare for the synergistic use of data from the high-temporal.
GOES-R Recommendations from past GOES Users’ Conference: Jim Gurka Tim Schmit Tom Renkevens NOAA/ NESDIS Tony Mostek NOAA/ NWS Dick Reynolds Short and.
Center for Satellite Applications and Research (STAR) Review 09 – 11 March 2010 The GOES-14 Science Test Timothy Schmit (GOVERNMENT PRINCIPAL INVESTIGATOR)
GOES-R Air Quality Proving Ground H. Zhang 1, R. M. Hoff 1, S. Kondragunta 2, A. Huff 3, M. Green 4, S. A. Christopher 5, B. Pierce.
Jinlong Li 1, Jun Li 1, Timothy J. Schmit 2, Fang Wang 1, James J. Gurka 3, and W. Paul Menzel 2 1 Cooperative Institute for Meteorological Satellite Studies.
High impact weather studies with advanced IR sounder data Jun Li Cooperative Institute for Meteorological Satellite Studies (CIMSS),
As components of the GOES-R ABI Air Quality products, a multi-channel algorithm similar to MODIS/VIIRS for NOAA’s next generation geostationary satellite.
Transitioning research data to the operational weather community Overview of GOES-R Proving Ground Activities at the Short-term Prediction Research and.
R. T. Pinker, H. Wang, R. Hollmann, and H. Gadhavi Department of Atmospheric and Oceanic Science, University of Maryland, College Park, Maryland Use of.
Summary of GOES-R Activities at CIMSS/ASPB and Recommendations for the Future Steven Ackerman, Tom Achtor GOES-R Algorithm Working Group GOES-R Algorithm.
Using Simulated Satellite Imagery in NWS Experiments and Testbeds Justin Sieglaff Wayne Feltz Tim Schmit Jordan Gerth Cooperative Institute for Meteorological.
Preparing for GOES-R: old tools with new perspectives Bernadette Connell, CIRA CSU, Fort Collins, Colorado, USA ABSTRACT Creating.
Studies of Advanced Baseline Sounder (ABS) for Future GOES Jun Li + Timothy J. Allen Huang+ W. +CIMSS, UW-Madison.
User Readiness Issues for GOES-R Jim Gurka Tim Schmit (NOAA/ NESDIS) Tony Mostek (NOAA/NWS) Dick Reynolds (Short and Associates) 4 th GOES Users’ Conference.
Introduction GOES-R ABI will be the first GOES imaging instrument providing observations in both the visible and the near infrared spectral bands. Therefore.
The Hyperspectral Environmental Suite (HES) and Advanced Baseline Imager (ABI) will be flown on the next generation of NOAA Geostationary Operational Environmental.
1 Recommendations from the 2 nd GOES-R Users’ Conference: Jim Gurka Tim Schmit NOAA/ NESDIS Dick Reynolds Short and Associates.
Real-time Display of Simulated GOES-R (ABI) Experimental Products Donald W. Hillger NOAA/NESDIS, SaTellite Applications and Research (STAR) Regional And.
OBJECTIVE  GRAFIIR is a facility established to leverage existing capabilities and those under development for both current GOES and its successor ABI.
What does it cover? This session addresses “Why?”, “When?”, and “What Sensors?” will be on GOES- R, and presents examples of what to expect. If is a look.
Center for Satellite Applications and Research (STAR) Review 09 – 11 March 2010 Image: MODIS Land Group, NASA GSFC March 2000 Nearcasting Severe Convection.
May 15, 2002MURI Hyperspectral Workshop1 Cloud and Aerosol Products From GIFTS/IOMI Gary Jedlovec and Sundar Christopher NASA Global Hydrology and Climate.
High impact weather nowcasting and short-range forecasting using advanced IR soundings Jun Li Cooperative Institute for Meteorological.
4 th Workshop on Hyperspectral Science of UW-Madison MURI, GIFTS, and GOES-R Hyperspectral Applications for Aviation Advanced Satellite Aviation-weather.
User Readiness Issues for GOES-R Jim Gurka Tim Schmit (NOAA/ NESDIS) Dick Reynolds (Short and Associates) 4 th GOES Users’ Conference May 2, 2006 Broomfield.
Assimilating Cloudy Infrared Brightness Temperatures in High-Resolution Numerical Models Using Ensemble Data Assimilation Jason A. Otkin and Rebecca Cintineo.
Center for Satellite Applications and Research (STAR) Review 09 – 11 March 2010 Combining GOES Observations with Other Data to Improve Severe Weather Forecasts.
5th GOES Users’ Conference, New Orleans, January 2008 Geostationary satellites in a WMO perspective Jérôme Lafeuille WMO Space Programme World Meteorological.
GOES-R Resources from NOAA, NASA & CIMSS
Synthetic GOES-R Imagery of Agricultural Burning and Forest Wildfires
USING GOES-R TO HELP MONITOR UPPER LEVEL SO2
Preparation for use of the GOES-R Advanced Baseline Imager (ABI)
Who We Are SSEC (Space Science and Engineering Center) is part of the Graduate School of the University of Wisconsin-Madison (UW). SSEC hosts CIMSS (Cooperative.
ABI Visible/Near-IR Bands
GOES-R Hyperspectral Environmental Suite (HES) Requirements
RECENT INNOVATIONS IN DERIVING ATMOSPHERIC MOTION VECTORS AT CIMSS
Geostationary Sounders
AIRS/GEO Infrared Intercalibration
Generation of Simulated GIFTS Datasets
A Local Real-time Mesoscale Prediction System for
Comparison of Simulated Top of Atmosphere Radiance Datasets
Presentation transcript:

GOES-R ABI PROXY DATA SET GENERATION AT CIMSS Mathew M. Gunshor, Justin Sieglaff, Erik Olson, Thomas Greenwald, Jason Otkin, and Allen Huang Cooperative Institute for Meteorological Satellite Studies (CIMSS) – Madison, WI 88 th AMS Annual Meeting 5 th GOES User’s Conference – January, 2008 – New Orleans, LA INTRODUCTION AND PURPOSE The Advanced Baseline Imager (ABI) on GOES-R will represent a technological leap in weather and environmental satellite capabilities. Improvements over the current imager include 16 spectral bands, faster data rates, spatial resolution, signal to noise and calibration accuracy. Preparing users for what lies ahead is a task being tackled by various research groups. At the Cooperative Institute for Meteorological Satellite Studies (CIMSS) multiple data sets are being generated in an effort to meet the needs of various GOES-R Algorithm Working Group (AWG) science teams. Parallel efforts are underway to provide simulated Advanced Baseline Imager (ABI) data from both existing satellite assets and from the Weather Research and Forecasting (WRF) model. Simulations from the WRF are being produced at multiple resolutions / time intervals to simulate ABI scanning scenarios: 15 minute full disk and 5 minute Continental US (CONUS) capabilities. WRF model simulations are turned into ABI imagery using a forward radiative transfer model (Poster P1.68) that incorporates both clear and cloudy-sky properties and a reflected component for the shortwave and visible bands. Some simulated datasets contain simulated instrument effects such as striping, random noise, and navigation shifts (Poster P1.47). A sophisticated remapping technique is being used to simulate the ABI from MODerate- resolution Imaging Spectroradiometer (MODIS) data (Poster 1.35). ABI SIMULATED FROM MODEL ABI SIMULATED FROM SATELLITE ABI will have a mesoscale mode that allows it to focus on a specific target every 30 seconds, without interrupting other aspects of the ABI scanning schedule. These images are from the WRF- model 667-m Mesoscale domain simulation and depict the beginning of a convective system forming in Oklahoma. P1.87 Large, memory-intensive WRF model simulations were recently performed on a high-performance supercomputer at the National Center for Supercomputing Applications (NCSA) at the University of Illinois in Urbana- Champaign (See Poster P1.20). ABI data were simulated from 3 nested domains configured to represent the anticipated GOES-R scanning regions (i.e. full disk, CONUS, and mesoscale). Full Disk: 6-km horizontal resolution CONUS: 2-km horizontal resolution Mesoscale: 667-m horizontal resolution DomainDataset Size 04 June June UTC12-20 UTC20-00 UTC00-02 UTC02-06 UTC Full disk3.4 TB30-minute15-minute5-minute 15-minute CONUS3.0 TB30-minute15-minute5-minute 15-minute Mesoscale2.8 TB30-minute15-minute1-minute 5-minute Simulating ABI from current satellite data requires the use of three current instruments to simulate every band. This 16-panel, showing France, required MODIS, Meteosat, and AIRS. Other simulations have been done using just MODIS and include a Fire and Smoke Case, Mountain Wave Case, Convective Cloud Case, Daytime Cloud Case, and a Mexican Dust Case. The 16 panel image comes from the WRF-model 2km resolution CONUS domain simulation, the full disk image comes from the 6-km resolution Full Disk domain. All of the simulated data are remapped to an approximate ABI projection based on the ideal Geostationary view from 75 West at ABI spatial resolution. Related oral presentations and Posters: 2.2 The ABI (Advanced Baseline Imager) on the GOES-R Series P1.3 Candidate approaches for the real-time generation of cloud properties from GOES-R ABI P1.11 GOES-R wind retrieval algorithm development P1.20 Large-scale WRF model simulations used for GOES-R research activities P1.35 Proxy ABI datasets relevant for fire detection that are derived from MODIS data P1.40 Trade-off studies on future GOES hyperspectral infrared sounding instrument P1.68 Verifying large-scale, high-resolution simulations of clouds for GOES-R activities P1.86 Current GOES Sounder applications and future needs P1.89 GOES-R/ABI legacy profile algorithm evaluation with MSG/SEVIRI 5.4 NOAA/NESDIS GOES-R AWG and its Role in the Development and Readiness of GOES-R Product Algorithms