Benjamin Sacépé Institut Néel, CNRS & Université Joseph Fourier, Grenoble Localization of preformed Cooper-pairs in disordered superconductors Lorentz.

Slides:



Advertisements
Similar presentations
Inhomogeneous electronic states in superconductors (Chapelier, Ioffe) How to disentangle the unavoidable atomic level inhomogeneity of real materials from.
Advertisements

Observation of a possible Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in CeCoIn 5 Roman Movshovich Andrea Bianchi Los Alamos National Laboratory, MST-10.
Theory of the pairbreaking superconductor-metal transition in nanowires Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
The block model for the Griffiths phase 2.The renormalization group for the phase transition in disordered systems (a) Replica trick. (b) Replica symmetry.
Josepson Current in Four-Terminal Superconductor/Exciton- Condensate/Superconductor System S. Peotta, M. Gibertini, F. Dolcini, F. Taddei, M. Polini, L.
Probing Superconductors using Point Contact Andreev Reflection Pratap Raychaudhuri Tata Institute of Fundamental Research Mumbai Collaborators: Gap anisotropy.
Optical properties of (SrMnO 3 ) n /(LaMnO 3 ) 2n superlattices: an insulator-to-metal transition observed in the absence of disorder A. Perucchi.
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Oda Migaku STM/STS studies on the inhomogeneous PG, electronic charge order and effective SC gap of high-T c cuprate Bi 2 Sr 2 CaCu 2 O 8+  NDSN2009 Nagoya.
Fluctuating stripes at the onset of the pseudogap in the high-T c superconductor Bi 2 Sr 2 CaCu 2 O 8+  Parker et al Nature (2010)
Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
High-T c Superconductor Surface State 15/20/2015 Group member: 陈玉琴、郭亚光、贾晓萌、刘俊义、刘晓雪 彭星星、王建力、王鹏捷 ★ 、喻佳兵 ★ :Group Leader & Speaker.
Coherent Quantum Phase Slip Oleg Astafiev NEC Smart Energy Research Laboratories, Japan and The Institute of Physical and Chemical Research (RIKEN), Japan.
Chaos and interactions in nano-size metallic grains: the competition between superconductivity and ferromagnetism Yoram Alhassid (Yale) Introduction Universal.
1 Sonia Haddad LPMC, Département de Physique, Faculté des Sciences de Tunis, Tunisia Collaboration N. Belmechri, (LPS, Orsay, France) M. Héritier, (LPS,
Probing many-body systems of ultracold atoms E. Altman (Weizmann), A. Aspect (CNRS, Paris), M. Greiner (Harvard), V. Gritsev (Freiburg), S. Hofferberth.
A new scenario for the metal- Mott insulator transition in 2D Why 2D is so special ? S. Sorella Coll. F. Becca, M. Capello, S. Yunoki Sherbrook 8 July.
Probing phases and phase transitions in cold atoms using interference experiments. Anatoli Polkovnikov, Boston University Collaboration: Ehud Altman- The.
Interference of fluctuating condensates Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann Vladimir Gritsev Harvard Mikhail Lukin.
Multifractal superconductivity Vladimir Kravtsov, ICTP (Trieste) Collaboration: Michael Feigelman (Landau Institute) Emilio Cuevas (University of Murcia)
A. Perali, P. Pieri, F. Palestini, and G. C. Strinati Exploring the pseudogap phase of a strongly interacting Fermi gas Dipartimento.
Fluctuation conductivity of thin films and nanowires near a parallel-
Transverse Transport / the Hall and Nernst Effects Usadel equation for fluctuation corrections Alexander Finkel‘stein Fluctuation conductivity in disordered.
Superglasses and the nature of disorder-induced SI transition
Ying Chen Los Alamos National Laboratory Collaborators: Wei Bao Los Alamos National Laboratory Emilio Lorenzo CNRS, Grenoble, France Yiming Qiu National.
Electron coherence in the presence of magnetic impurities
Thin-film Giaever transformer
Hopping transport and the “Coulomb gap triptych” in nanocrystal arrays Brian Skinner 1,2, Tianran Chen 1, and B. I. Shklovskii 1 1 Fine Theoretical Physics.
Dynamics of phase transitions in ion traps A. Retzker, A. Del Campo, M. Plenio, G. Morigi and G. De Chiara Quantum Engineering of States and Devices: Theory.
PseudoGap Superconductivity and Superconductor-Insulator transition In collaboration with: Vladimir Kravtsov ICTP Trieste Emilio Cuevas University of Murcia.
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
Lecture 3. Granular superconductors and Josephson Junction arrays Plan of the Lecture 1). Superconductivity in a single grain 2) Granular superconductors:
Two Level Systems and Kondo-like traps as possible sources of decoherence in superconducting qubits Lara Faoro and Lev Ioffe Rutgers University (USA)
PseudoGap Superconductivity and Superconductor-Insulator transition In collaboration with: Vladimir Kravtsov ICTP Trieste Emilio Cuevas University of Murcia.
Superconductivity Introduction Disorder & superconductivity : milestones BCS theory Anderson localization Abrikosov, Gorkov Anderson theorem
Self-consistent Calculations for Inhomogeneous Correlated Systems Amit Ghosal IISER, Kolkata HRI, 12 Nov, 2010.
Tunneling Spectroscopy and Vortex Imaging in Boron-doped Diamond
Generalized Dynamical Mean - Field Theory for Strongly Correlated Systems E.Z.Kuchinskii 1, I.A. Nekrasov 1, M.V.Sadovskii 1,2 1 Institute for Electrophysics.
Wigner-Mott scaling of transport near the two-dimensional metal-insulator transition Milos Radonjic, D. Tanaskovic, V. Dobrosavljevic, K. Haule, G. Kotliar.
1 Disorder and Zeeman Field-driven superconductor-insulator transition Nandini Trivedi The Ohio State University “Exotic Insulating States of Matter”,
Magnetic-Field-Driven in Unconventional Josephson Arrays
Application of the operator product expansion and sum rules to the study of the single-particle spectral density of the unitary Fermi gas Seminar at Yonsei.
Raman Scattering As a Probe of Unconventional Electron Dynamics in the Cuprates Raman Scattering As a Probe of Unconventional Electron Dynamics in the.
A Finite-Temperature Insulator?
1/3/2016SCCS 2008 Sergey Kravchenko in collaboration with: Interactions and disorder in two-dimensional semiconductors A. Punnoose M. P. Sarachik A. A.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in a Quasi-two-dimensional Frustrated Magnet M. A.
Theory of induced superconductivity in graphene
R OLE OF D ISORDER IN S UPERCONDUCTING T RANSITION Sudhansu S. Mandal IACS, Kolkata HRI 1.
Optical lattice emulator Strongly correlated systems: from electronic materials to ultracold atoms.
Fractal and Pseudopgaped Superconductors: theoretical introduction
Spatially resolved quasiparticle tunneling spectroscopic studies of cuprate and iron-based high-temperature superconductors Nai-Chang Yeh, California Institute.
Sangita Bose, Bombay Antonio Bianconi, Rome Welcome !!! A. Garcia-Garcia, Cambridge.
B. Sacépé, T. Dubouchet, C. Chapelier, M. Sanquer, CEA - Grenoble T. Baturina, Institute of semiconductor Physics - Novosibirsk V. Vinokur, Material Science.
Dirac fermions with zero effective mass in condensed matter: new perspectives Lara Benfatto* Centro Studi e Ricerche “Enrico Fermi” and University of Rome.
“Granular metals and superconductors” M. V. Feigel’man (L.D.Landau Institute, Moscow) ICTS Condensed matter theory school, Mahabaleshwar, India, Dec.2009.
Spectral function in Holographic superconductor Wen-Yu Wen (NTU) Taiwan String Theory Workshop 2010.
6/7/2016 Iron Superconductivity !! o Superconducting Gap in FeAs from PCAR o “Minimal” Model of FeAs planes – Different from CuO 2 !! o Multiband Magnetism.
Memory effects in electron glasses Markus Müller Eran Lebanon Lev Ioffe Rutgers University, Piscataway NJ 10 August, 2005, Leiden.
Charge-Density-Wave nanowires Erwin Slot Mark Holst Herre van der Zant Sergei Zaitsev-Zotov Sergei Artemenko Robert Thorne Molecular Electronics and Devices.
Presented by Fermion Glue in the Hubbard Model: New Insights into the Cuprate Pairing Mechanism with Advanced Computing Thomas C. Schulthess Computational.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in Quasi-two-dimensional Frustrated Magnet M. A.
Single crystal growth of Heisenberg spin ladder and spin chain Single crystal growth of Heisenberg spin ladder and spin chain Bingying Pan, Weinan Dong,
P. Szabó, V. Hašková, T. Samuely, M. Kopčík, P. Samuely
ARPES studies of cuprates
Interplay of disorder and interactions
Superconductivity in Systems with Diluted Interactions
Spontaneous inhomogeneity in disordered superconducting films
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
High Temperature Superconductivity
第27回応用物理学科セミナー 日時: 10月25日(火) 16:00 – 17:30 場所:葛飾キャンパス研究棟8F第1セミナー室
Presentation transcript:

Benjamin Sacépé Institut Néel, CNRS & Université Joseph Fourier, Grenoble Localization of preformed Cooper-pairs in disordered superconductors Lorentz Center, Leiden 2011

Benjamin Sacépé Institut Néel, CNRS & Université Joseph Fourier, Grenoble Localization of preformed Cooper-pairs in disordered superconductors Thomas Dubouchet, Claude Chapelier, Marc Sanquer CEA Grenoble Maoz Ovadia, Dan Shahar Weizmann Institute of Science, Rehovot M. Feigel’man L.D. Landau Institut for Theoretical Phyiscs, Moscow L. Ioffe Rutgers University, Piscataway Lorentz Center, Leiden 2011

Superconductor-Insulator Transition (SIT) Main ingredients : 1.Disorderlocalization 2.Attractive pairing superconducting phase 3.Coulomb interactioncompetes with pairing 4.Reduced dimensionality affects 1,2 and 3 d = Quench condensed Bismuth D.B. Haviland, Y. Lui, A.M. Goldman, PRL (‘89)

Amorphous indium oxide G. Sambandamurthy, et al. PRL 94, , (2005) Magnetic field-tuned SIT For similar results in TiN films see : T. Baturina, et al. PRL (2007) V. F. Gantmakher et al., JETP 82, 951 (1996)

0.20K Superconductor Magnetic field-tuned SIT

0.20K Insulator Positive magnetoresistance at low field : Superconducting correlations in insulators !? Superconductor Magnetic field-tuned SIT

0.20K Insulator Positive magnetoresistance at low field : Superconducting correlations in insulators !? « Insulating correlations » in superconductors ??? Superconductor Magnetic field-tuned SIT

mK-STM setup : tunneling spectroscopy Cryostat : inverted dilution 50mK< T< 6K C. Chapelier’s setup, CEA Grenoble  Combined transport and spectroscopy measurements

Thickness : 15 nm (blue) and 30 nm (red)  3D regime Samples : e-gun evaporation onto Si/SiO 2 substrate of high purity In 2 O 3 under O 2 pressure 1 mm InO#1 InO#2 Amorphous Indium Oxyde (a-InO x )

Thickness : 15 nm (blue) and 30 nm (red)  3D regime 1 mm InO#1 InO#2 Amorphous Indium Oxyde (a-InO x ) V. F. Gantmakher et al., JETP 82, 951 (1996) Samples : e-gun evaporation onto Si/SiO 2 substrate of high purity In 2 O 3 under O 2 pressure

Fit : s-wave BCS density-of-states Typical spectrum measured at 50 mK InO#1 Tunneling spectroscopy of amorphous indium oxyde

Inhomogeneities of Δ(r) Map of the spectral gap Gaussian distribution For similar results in TiN and NbN films see : B. Sacépé, et al. PRL 101, (2008) M. Mondal, et al. PRL 106, (2011)

Spectra measured at different locations (T=50mK) G, Normalized Inhomogeneities of Δ(r) Gaussian distribution For similar results in TiN and NbN films see : B. Sacépé, et al. PRL 101, (2008) M. Mondal, et al. PRL 106, (2011)

BCS ratio Δ/T c =1.76 ? Fluctuations of Δ(r) and superconducting transition

 Definition of T c : zero-resistance state (macroscopic phase coherence)

G, Normalized Fluctuations of peak heights ! Fluctuations of the BCS peaks

Extreme case : « Insulating » gap Spectra measured at different locations (T=50mK)

G, Normalized High disorder sample Let’s approach the SIT Sample InO#2 : disorder  2 InO#1 InO#2

resistivity × 2 InO#1 T c ~ 1.7 K InO#2 T c ~ 1.3 K  Proliferation of gaps without peaks Let’s approach the SIT Increase of disorder InO#1 InO#2

Anderson model : Attractive interaction : Role of Spatial Amplitude Fluctuations in Highly Disordered s-Wave Superconductor 65 A. Ghosal, M. Randeria, N. Trivedi, PRL 81, 3940, (1998) and PRB 65, (2001) Disorder 2D localization length : λ Superconductivity and disorder With increasing disorder :  Superconductivity becomes « granular-like »

λ Superconductivity and disorder With increasing disorder :  Superconductivity becomes « granular-like »  Spectral gap remains finite even at large disorder  Spectral gap is NOT anymore the SC order parameter λ Role of Spatial Amplitude Fluctuations in Highly Disordered s-Wave Superconductor 65 A. Ghosal, M. Randeria, N. Trivedi, PRL 81, 3940, (1998) and PRB 65, (2001)

λ  Insulating gap induced by pairing interaction λ Role of Spatial Amplitude Fluctuations in Highly Disordered s-Wave Superconductor 65 A. Ghosal, M. Randeria, N. Trivedi, PRL 81, 3940, (1998) and PRB 65, (2001) Superconductivity and disorder M. Ma, and P. A. Lee, PRB 32, 5658, (1985) M. Feigel’man, et al., PRL 98, , (2007) M. Feigel’man, et al, Ann. Phys. 325, 1390 (2010) M. Feigel’man, et al, PRB (2010)

Insulating gap due to pairing P. W. Anderson, J. Phys. (Paris) Colloq. 37, C4-339 (1976) M. Ma, and P. A. Lee, PRB 32, 5658, (1985) K. A. Matveev and A. Larkin, PRL. 78, 3749, (1997) 65 A. Ghosal, et al. PRL 81, 3940, (1998) and PRB 65, (2001) M. Feigel’man, et al. PRL 98, , (2007) M. Feigel’man, et al. Ann. Phys. 325, 1390 (2010) M. Feigel’man, et al. PRB 82, (2010) In the lowest order: Reduced BCS Hamiltonian built on eigenstates of the Anderson problem with In the high-disorder regime when

λ  Insulating gap induced by pairing interaction λ Role of Spatial Amplitude Fluctuations in Highly Disordered s-Wave Superconductor 65 A. Ghosal, M. Randeria, N. Trivedi, PRL 81, 3940, (1998) and PRB 65, (2001) Superconductivity and disorder M. Ma, and P. A. Lee, PRB 32, 5658, (1985) M. Feigel’man, et al., PRL 98, , (2007) M. Feigel’man, et al, Ann. Phys. 325, 1390 (2010) M. Feigel’man, et al, PRB (2010)

Superconductivity and disorder Recent QMC simulations K. Bouadim, Y. Loh, M. Randeria, N. Trivedi, arXiv: Disorder SC Insulator

Pairing gap in the insulator resistivity × 2  Proliferation of incoherent –localized— Cooper-pairs when approaching the SIT when approaching the SIT

Pairing gap in the insulator resistivity × 2  Proliferation of incoherent –localized— Cooper-pairs when approaching the SIT when approaching the SIT Simulations on the Bethe lattice Lev Ioffe, Misha Feigel’man M. Feigel’man, et al., PRL (2007) M. Feigel’man, et al, Ann. Phys. (2010) M. Feigel’man, et al, PRB (2010)

TcTc Pseudogap above T c : preformed pairs T-dependence of the local DOS Pseudogap in TiN and NbN films : B. Sacépé, et al. Nature Commun. 1:140 (2010) M. Mondal, et al. PRL 106, (2011)

Pseudogap in quasi-2D conventional superconductors A. Varlamov and V. Dorin, Sov. Phys. JETP 57, 1089, (1983) B. Sacépé, et al. Nature Commun. 1:140 (2010) Superconducting fluctuations in quasi-2D TiN films ( thickness < 5nm )

Pseudogap above T c  The overall shape is the same

Local versus macroscopic phase coherence T peak : Temperature below which peaks start to grow  BCS peaks give a local signature of the superconducting phase coherence  BCS peaks give a local signature of the superconducting phase coherence BCS peaks appears at Tc independently of gap inhomogeneities

« Insulating » gap at T<<T c  Local pairing without phase coherence at T << Tc Formation of a pseudogap without BCS peaks at T>T c  Local pairing without phase coherence at T > T c Spectral signature of localized Cooper pairs Preformed Cooper-pairs Condensation versus localization of preformed Cooper pairs

Conclusions Localization of preformed Cooper pairs in disordered superconductors Nature Physics 7, 239 (2011) Preformed Cooper-Pairs above Tc Pseudogap in the DOS between Tc and ~ 3-4 Tc “Partial” condensation of pairs below Tc Rectangular spectra at 50mK = localized Cooper pairs SIT occurs through the localization of Cooper pairs Gap in the DOS remains & coherence peaks disappear

Spatial fluctuations Traces of spectra : fluctuations of the spectral properties (T=50mK)

Disorder-enhanced Coulomb interaction B. Altshuler, et al., Phys. Rev. Lett. 44, 1288, (1980) Coulomb interaction : Zero-Bias Anomaly

Soft coulomb gap Superconducting fluctuations We need a global theory We need a global theory ! TiN 1 Quantum corrections to the DOS

Superconducting fluctuations (2D Aslamasov-Larkin correction …) Disorder-enhanced Coulomb interaction (2D weak-localization/Aronov-Altshuler corrections) Quantum corrections to the conductivity

Dynamical Coulomb blockade P. Joyez and D. Estève, PRB 56, 1848, (1997)

Magnetic field-tuned SIT Huge magnetoresistance peak : superconductivity-related ? Amorphous indium oxyde d = 15 nm

Spectral gap map Coherence peak map Spectral fluctuations

Disorder-induced inhomogeneities in TiN B. Sacépé, et al. PRL 101, (2008) Titanium nitride T. Baturina (Novosibirsk) V. Vinokur (Argonne National Lab.) Gaped insulator made of localized Cooper pairs ? Disorder-tuned SIT in ultra-thin films of TiN