Spectrumbeat signal characteristics of the used diode lasers for transversal cooling and trapping For stabilizing the diode lasers we use the mean of saturation.

Slides:



Advertisements
Similar presentations
Photoexcitation and Ionization of Cold Helium Atoms R. Jung 1,2 S. Gerlach 1,2 G. von Oppen 1 U. Eichmann 1,2 1 Technical University of Berlin 2 Max-Born-Institute.
Advertisements

First Year Seminar: Strontium Project
Marina Quintero-Pérez Paul Jansen Thomas E. Wall Wim Ubachs Hendrick L. Bethlem.
electrostatic ion beam trap
Ultra-Cold Strontium Atoms in a Pyramidal Magneto-Optical Trap A.J. Barker 1, G. Lochead 2, D. Boddy 2, M. P. A. Jones 2 1 Ponteland High School, Newcastle,
Towards a Laser System for Atom Interferometry Andrew Chew.
Laser cooling of molecules. 2 Why laser cooling (usually) fails for molecules Laser cooling relies on repeated absorption – spontaneous-emission events.
P. Cheinet, B. Pelle, R. Faoro, A. Zuliani and P. Pillet Laboratoire Aimé Cotton, Orsay (France) Cold Rydberg atoms in Laboratoire Aimé Cotton 04/12/2013.
Quantum Computing with Trapped Ion Hyperfine Qubits.
Rydberg physics with cold strontium James Millen Durham University – Atomic & Molecular Physics group.
Testing the Penning trap (operated as a Paul trap)
Danielle Boddy Durham University – Atomic & Molecular Physics group Red MOT is on its way to save the day!
Studying our cold Rydberg gas James Millen. Level scheme (5s 2 ) 1 S 0 461nm 32MHz (5s5p) 1 P 1 (5sns) 1 S 0 (5snd) 1 D 2 Continuum ~413nm Studying our.
Lecture II Non dissipative traps Evaporative cooling Bose-Einstein condensation.
Siegfried Schreiber, DESY The TTF Laser System Laser Material Properties Conclusion? Issues on Longitudinal Photoinjector.
NON-EQUILIBRIUM HEAVY GASES PLASMA MHD-STABILIZATION IN AXISYMMETRIC MIRROR MAGNETIC TRAP A.V. Sidorov 2, P.A. Bagryansky 1, A.D. Beklemishev 1, I.V. Izotov.
Proposed injection of polarized He3+ ions into EBIS trap with slanted electrostatic mirror* A.Pikin, A. Zelenski, A. Kponou, J. Alessi, E. Beebe, K. Prelec,
October 16-18, 2012Working Group on Space-based Lidar Winds 1 AEOLUS STATUS Part 1: Design Overview.
Ions in Intense Femtosecond Laser Fields Jarlath McKenna MSci Project10th December 2001 Supervisor: Prof. Ian Williams.
TRIµP Laser Spectroscopy: Status and Future U Dammalapati TRI  P Facility Lasers for Na  -decay Ra Spectroscopy & EDM Towards cooling of Heavy Alkaline.
JRA3: Cold and Complex (Biomolecular) Targets Why study interaction of HCI with biomolecular targets? Basic physics: large energy transfer in a single.
Photoassociation Spectroscopy of Ultracold Molecules Liantuan XIAO State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser.
Solution Due to the Doppler effect arising from the random motions of the gas atoms, the laser radiation from gas-lasers is broadened around a central.
Instrumentation in the Molecular Physics Group Presented by: Mats Larsson.
Spectroscopy of a forbidden transition in a 4 He BEC and a 3 He degenerate Fermi gas Rob van Rooij, Juliette Simonet*, Maarten Hoogerland**, Roel Rozendaal,
Photoassociation Spectroscopy of Ytterbium Atoms with Dipole-allowed and Intercombination Transitions K. Enomoto, M. Kitagawa, K. Kasa, S. Tojo, T. Fukuhara,
Experiments with ultracold RbCs molecules Peter Molony Cs Rb.
FAST KICKER STATUS Fabio Marcellini On behalf of LNF fast kickers study group* * D. Alesini, F. Marcellini P. Raimondi, S. Guiducci.
Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8 Zheng-Tian Lu Argonne National Laboratory University of Chicago Funding: DOE, Office of.
Saturation in Multi-level Atoms from First Principles Dustin Stuart 1, Gar-Wing Truong 1, Tom Stace 2 Eric May 1, Andre Luiten 1 1 Frequency Standards.
Molecular Deceleration Georgios Vasilakis. Outline  Why cold molecules are important  Cooling techniques  Molecular deceleration  Principle  Theory.
Experiments with Stark-decelerated and trapped polar molecules Steven Hoekstra Molecular Physics Department ( Gerard Meijer) Fritz-Haber-Institutder Max-Planck-Gesellschaft.
Part III Commissioning. Proof of Principle FFAG (POP) study The world first proton FFAG –Commissioned in March –From 50 keV to 500 keV in 1ms. –Proof.
Resonant dipole-dipole energy transfer from 300 K to 300μK, from gas phase collisions to the frozen Rydberg gas K. A. Safinya D. S. Thomson R. C. Stoneman.
Prospects for ultracold metastable helium research: phase separation and BEC of fermionic molecules R. van Rooij, R.A. Rozendaal, I. Barmes & W. Vassen.
Damping of the dust particle oscillations at very low neutral pressure M. Pustylnik, N. Ohno, S.Takamura, R. Smirnov.
Ultracold Helium Research Roel Rozendaal Rob van Rooij Wim Vassen.
Toward a Stark Decelerator for atoms and molecules exited into a Rydberg state Anne Cournol, Nicolas Saquet, Jérôme Beugnon, Nicolas Vanhaecke, Pierre.
Laser Cooling and Trapping Magneto-Optical Traps (MOTs) Far Off Resonant Traps (FORTs) Nicholas Proite.
Dynamics of Low Density Rydberg Gases Experimental Apparatus E. Brekke, J. O. Day, T. G. Walker University of Wisconsin – Madison Support from NSF and.
QUEST - Centre for Quantum Engineering and Space-Time Research 1 A continuous loading scheme for a dipole trap.
Trap laser (6 mW - 1 cm diameter) x 6 -  /2 detuned to 171Yb 1P1 oven Zeeman slower Trapped atom number Lens f=7.5 cm, diameter d=2.54 cm PMT = 5
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
State Scientific Center of the Russian Federation National Research Institute for Physical-Technical and Radio Engineering Measurements Progress in deep.
LDRD: Magnetized Source JLEIC Meeting November 20, 2015 Riad Suleiman and Matt Poelker.
Daisuke Ando, * Susumu Kuma, ** Masaaki Tsubouchi,** and Takamasa Momose** *Kyoto University, JAPAN **The University of British Columbia, CANADA SPECTROSCOPY.
RA07 Current Status of the University of Oklahoma e-EDM Search. John Moore-Furneaux*, Neil Shafer-Ray Columbus OH, 6/23/2011 *J.E. Furneaux.
Jerzy Zachorowski M. Smoluchowski Institute of Physics, Jagiellonian University Nonlinear Spectroscopy of Cold Atoms, Preparations for the BEC Experiments.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
TESLA DAMPING RING RF DEFLECTORS DESIGN F.Marcellini & D. Alesini.
TRI  P RFQ design, simulations and tests E. Traykov TRI  P project and facility RFQ tests and design Simulations Conclusion TRI  P Group: G.P. Berg,
S. Bettoni, R. Corsini, A. Vivoli (CERN) CLIC drive beam injector design.
Development of High Current Bunched Magnetized Electron DC Photogun MEIC Collaboration Meeting Fall 2015 October 5 – 7, 2015 Riad Suleiman and Matt Poelker.
Collisional loss rate measurement of Cesium atoms in MOT Speaker : Wang guiping Date : December 25.
Rydberg atoms part 1 Tobias Thiele.
Transverse Coherent Transition Radiation (TCTR) Experiment First Ideas for a Measurement Setup Max-Planck-Institute for Physics Munich Olaf Reimann, Scott.
Towards anions laser cooling * Giovanni Cerchiari ( Elena Jordan Alban Kellerbauer Max-Planck-Insitut für Kernphysik (Saupfercheckweg.
F Sergei Nagaitsev (FNAL) Webex meeting Oct ICD-2 chopper requirements and proposal #1.
Many-Body Effects in a Frozen Rydberg Gas Feng zhigang
Proposal to the INTC, 21. May 2007
Alternate Gradient deceleration of large molecules
S.M. Polozov & Ko., NRNU MEPhI
Resonant dipole-dipole energy transfer
“Electron cooling device in the project NESR (FAIR)"
PANDA Collaboration Meeting
Helium-Neon laser Henrik Porte.
State evolution in cold helium Rydberg gas
Phys102 Lecture 20 Electromagnetic Waves * (skipped)
Electromagnetic Waves
Cold Atom project 12/02/2019.
Presentation transcript:

spectrumbeat signal characteristics of the used diode lasers for transversal cooling and trapping For stabilizing the diode lasers we use the mean of saturation spectroscopy. We extract the control signal out of the spectrum of the -transition. The laser linewidth of the diode lasers is determined to about 5 MHz by measuring the beat signal on a fast photodetector. transversal cooling and deflection of the He* beam To separate the metastable helium atoms from the ground-state atoms, the He* source is placed off-axis, so that only the metastables will be deflected into the “Stark-slower”-section by the use of the diode laser at = 1083 nm. R. Jung 1, R. Schumann 2, S. Gerlach 1, T. Kwapien 1, U. Eichmann 2, G. von Oppen 1 1 Technische Universität Berlin, Institut für Atomare und Analytische Physik, Hardenbergstrasse 6, D Berlin 2 Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Str. 2A, D Berlin Magneto-Optical Trapping of “Stark- Slowed” Metastable Helium Atoms Max-Born-Institut goal : - study of ionisation dynamics of metastable helium atoms in a trap - cold collisions of ultraslow He* - storage of metastable helium atoms in an electro-dynamical trap - realization of a storage-ring for slow helium atoms trapping and guiding He* atoms by means of dynamical electric fields Our aim is to construct a trap or an atom-guide for helium atoms based on rotating electric fields. Simulations show the possibility to hold helium atoms with v < 2 m/s against gravity. With variable structures of the rods it will be possible to get a storage-ring for metastable helium atoms, where we can study ultracold collisions of He*. electrodes :calculated trajectory : Getting a closed trajectory of a trapped atom, we used following parameters: trap dimensions: distance of the rods8 mm radius of the rods2 mm applied voltage :U = 20,0 kV frequency of the applied voltage : = 3000 Hz outlook principle of laser cooling by the use of the Stark effect polarisability :  scalar (3 3 P) = MHz/(kV/cm) 2  tensor (3 3 P) = MHz/(kV/cm) 2  scalar (2 3 S) = MHz/(kV/cm) 2 energy [cm -1 ] discharge energy [GHz] energy [MHz] stark-splitting of the 3 3 P 2 -niveau stark-shift of the 3 3 P-multiplett electric field [kV/cm] - energy levels of helium up to n = 3 fixed applied voltage - first two field plates:U 1 = 12,1 kV; U 2 = 18,6 kV detuning - longitudinal cooling laser  ~ -2,3 GHz detuning - MOT diode laser:  ~ -8 MHz Shown are TOF-spectra of cooled helium atoms taken from the MOT-MCP while varying the applied voltage of the third field plate. The increase of the signal was due to the interaction between the MOT-laser and helium atoms (v atoms ~ 10 m/s) at U 3 = 25,1 kV. - results of laser cooling trapping of metastable helium atoms in a magneto-optical trap Shown is the loading and the decay of our MOT. field-gradient (z-axis) :dB/dz = 6,4 Gauss/cm detuning of the MOT-laser :  = -7 MHz diameter of the trapping laser beam : d = 2 cm lifetime of the trap :  240 ms v start ~ 1000 m/s applied voltage (U3,U4) applied voltage (U1,U2) U1 U3 U2 U4