Solid-State Electronics

Slides:



Advertisements
Similar presentations
Anandh Subramaniam & Kantesh Balani
Advertisements

The Muppet’s Guide to: The Structure and Dynamics of Solids 2. Simple Crystal Structures.
CRYSTAL STRUCTURE.
II. Crystal Structure Lattice, Basis, and the Unit Cell
Ch.1 Introduction Optoelectronic devices: - devices deal with interaction of electronic and optical processes Solid-state physics: - study of solids, through.
Lec. (4,5) Miller Indices Z X Y (100).
Lecture IX Crystals dr hab. Ewa Popko. The Schrödinger equation The hydrogen atom The potential energy in spherical coordinates (The potential energy.
Explaining Vapor Pressure on the Molecular Level Some of the molecules on the surface of a liquid have enough energy to escape the attraction of the bulk.
ENE 311 Lecture 3. Bohr’s model Niels Bohr came out with a model for hydrogen atom from emission spectra experiments. The simplest Bohr’s model is that.
Properties of Solids: Pure Solid Crystalline Amorphous Atomic Ionic Molecular Metallic Network solid.
Introduction to Solids. 3 Classes of Solids Amorphous – No long range order Polycrystalline – Order within grains Single Crystal – Regular, repeated pattern.
ECE 371 – Chapter 1 Crystal Structure of solids. Classifying materials on the basis of their ability to conduct current.  Conductor – allows for flow.
Chapter 1 The Crystal Structure of Solids Describe three classifications of solids— amorphous, polycrystalline, and single crystal. Discuss the concept.
Crystalline Structures Edward A. Mottel Department of Chemistry Rose-Hulman Institute of Technology.
Crystalline Structures Edward A. Mottel Department of Chemistry Rose-Hulman Institute of Technology.
Laser Physics I Dr. Salah Hassab Elnaby Lecture(2)
Types of Solids Three general types 1. Amorphous ― with order only within a few atomonic and molecular dimensions (Fig. (a)) 2. Polycrystalline ― with.
Basic Crystallography 26 January 2015 Three general types of solids 1. Amorphous ― with order only within a few atomic and molecular dimensions (Fig. (a))
Chapter 13 States of Matter 13.3 The Nature of Solids
Lecture IV Crystals dr hab. Ewa Popko. Why Solids?  most elements are solid at room temperature  atoms in ~fixed position “simple” case - crystalline.
Crystal Binding (Bonding) Overview & Survey of Bonding Types Continued
1. Crystal Properties and Growth of Semiconductors
PH 0101 UNIT 4 LECTURE 1 INTRODUCTION TO CRYSTAL PHYSICS
Properties of Solids. Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved. What is the strongest material in the world? CHEMISTRY.
Chapter 12 Solids and Modern Materials
ECEE 302 Electronic Devices Drexel University ECE Department BMF-Lecture Page -1 Copyright © 2002 Barry Fell 23 September 2002 ECEE 302: Electronic.
Chemistry. States of matter – SESSION IV Session Objectives.
ME 381R Fall 2003 Micro-Nano Scale Thermal-Fluid Science and Technology Lecture 3: Microstructure of Solids Dr. Li Shi Department of Mechanical Engineering.
EEE539 Solid State Electronics 1. Crystal Structure Issues that are addressed in this chapter include:  Periodic array of atoms  Fundamental types of.
Solid state physics Dr. Abeer Kamal Abd El-Aziz 1.
Chapter 1: Crystal Structure
1 Structures of Solids n Solids have maximum intermolecular forces. n Molecular crystals are formed by close packing of the molecules (model by packing.
STATES OF AGGREGATION AND CRYSTAL STRUCTURES.  Any material may be in either of the following state. Gas state Gas state Liquid state Liquid state Solid.
MSE 630 Introduction to Solid State Physics Topics: Structure of Crystals classification of lattices reciprocal lattices bonding.
ELECTRON AND PHONON TRANSPORT The Hall Effect General Classification of Solids Crystal Structures Electron band Structures Phonon Dispersion and Scattering.
Prolog Text Book: C.Kittel, "Introduction to Solid State Physics", 8th ed.,Wiley (2005) Website:
An Alternative Semiconductor Definition!
Crystal Structures Crystal is constructed by the continuous repetition in space of an identical structural unit. Lattice: a periodic array of mathematical.
PHY1039 Properties of Matter Crystallography, Lattice Planes, Miller Indices, and X-ray Diffraction (See on-line resource: )
Lecture 1 OUTLINE Semiconductor Fundamentals – General material properties – Crystal structure – Crystallographic notation – Electrons and holes Reading:
Last lecture Introduction to materials science and engineering Atoms / electron configuration.
Crystalline Solids, Band Theory, and Doping
Crystal Structure of Solids
Chapter 6 Solid-State Chemistry. Problems n n 6.9, 6.13, 6.14.
States of Matter Solids. States of Matter  Objectives  Describe the motion of particles in solids and the properties of solids according to the kinetic-molecular.
© 2015 Pearson Education, Inc. Chapter 12 Solids and Modern Materials James F. Kirby Quinnipiac University Hamden, CT Lecture Presentation.
1 Solids. 2 Structures of Solids Crystalline vs. Amorphous Crystalline solid: well-ordered, definite arrangements of molecules, atoms or ions. –Most solids.
M. Anil Kumar Children’s club lecture, NCCR
Engineering Chemistry Copyright  2011 Wiley India Pvt. Ltd. All rights reserved.
EEE 3394 Electronic Materials
Nanoelectronics Chapter 5 Electrons Subjected to a Periodic Potential – Band Theory of Solids
ME 330 Engineering Materials
Introduction to Semiconductors CSE251. Atomic Theory Consists of Electron, proton, neutron Electron revolve around nucleus in specific orbitals/shells.
LECTURE 5 BASICS OF SEMICONDUCTOR PHYSICS. SEMICONDUCTOR MATERIALS.
Materials Engineering
CH. 12 SOLIDS & MODERN MATERIALS
Lecture 1 OUTLINE Important Quantities Semiconductor Fundamentals
CHAPTER 3: STRUCTURE OF CRYSTALLINE SOLIDS
Solids Chem 112.
An Alternative Semiconductor Definition!
Lecture 1 OUTLINE Important Quantities Semiconductor Fundamentals
EECS143 Microfabrication Technology
Chapter 1 Crystallography
Crystal and Amorphous Structure
Lecture 1 OUTLINE Semiconductor Fundamentals
Semiconductors: A General Introduction
Solids.
L.
The Solid-State Structure of Metals and Ionic Compounds
Presentation transcript:

Solid-State Electronics Textbook: “Semiconductor Physics and Devices” By Donald A. Neamen, 1997 Reference: “Advanced Semiconductor Fundamentals” By Robert F. Pierret 1987 “Fundamentals of Solid-State Electronics” By C.-T. Sah, World Scientific, 1994 Homework: 0% Midterm Exam: 60% Final Exam: 40% Instructor: Pei-Wen Li Dept. of E. E. NCU Solid-State Electronics Chap. 1

Contents Chap. 1 Solid State Electronics: A General Introduction Chap. 2 Introduction to Quantum Mechanics Chap. 3 Quantum Theory of Solids Chap. 4 Semiconductor at Equilibrium Chap. 5 Carrier Motions: Chap. 6 Nonequilibrium Excess Carriers in Semiconductors Chap. 7 Junction Diodes  Instructor: Pei-Wen Li Dept. of E. E. NCU Solid-State Electronics Chap. 1

Chap 1. Solid State Electronics: A General Introduction Classification of materials Crystalline and impure semiconductors Crystal lattices and periodic structure Reciprocal lattice Instructor: Pei-Wen Li Dept. of E. E. NCU Solid-State Electronics Chap. 1

Introduction Solid-state electronic materials: Conductors, semiconductors, and insulators, A solid contains electrons, ions, and atoms, ~1023/cm3.  too closely packed to be described by classical Newtonian mechanics. Extensions of Newtonian mechanics: Quantum mechanics to deal with the uncertainties from small distances; Statistical mechanics to deal with the large number of particles. Instructor: Pei-Wen Li Dept. of E. E. NCU Solid-State Electronics Chap. 1

Classifications of Materials According to their viscosity, materials are classified into solids, liquid, and gas phases. Low diffusivity, High density, and High mechanical strength means that small channel openings and high interparticle force in solids. Solid Liquid Gas Diffusivity Low Medium High Atomic density Hardness Instructor: Pei-Wen Li Dept. of E. E. NCU Solid-State Electronics Chap. 1

Classification Schemes of Solids Geometry (Crystallinity v.s. Imperfection) Purity (Pure v.s. Impure) Electrical Classification (Electrical Conductivity) Mechanical Classification (Binding Force) Instructor: Pei-Wen Li Dept. of E. E. NCU Solid-State Electronics Chap. 1

Geometry Crystallinity Single crystalline, polycrystalline, and amorphous Instructor: Pei-Wen Li Dept. of E. E. NCU Solid-State Electronics Chap. 1

Geometry Imperfection A solid is imperfect when it is not crystalline (e.g., impure) or its atom are displaced from the positions on a periodic array of points (e.g., physical defect). Defect: (Vacancy or Interstitial) Impurity: Instructor: Pei-Wen Li Dept. of E. E. NCU Solid-State Electronics Chap. 1

Purity Pure v.s. Impure Impurity: chemical impurities:a solid contains a variety of randomly located foreign atoms, e.g., P in n-Si. an array of periodically located foreign atoms is known as an impure crystal with a superlattice, e.g., GaAs Distinction between chemical impurities and physical defects. Instructor: Pei-Wen Li Dept. of E. E. NCU Solid-State Electronics Chap. 1

Electrical Conductivity Material type Resistivity (W-cm) Conduction Electron density (cm-3) Examples Superconductor 0 (low T) 0 (high T) 1023 Sn, Pb Oxides Good Conductor 10-6 – 10-5 1022 – 1023 metals: K, Na, Cu, Au Conductor 10-5 – 10-2 1017 – 1022 semi-metal: As, B, Graphite Semiconductor 10-2 – 10-9 106 – 1017 Ge, Si, GaAs, InP Semi-insulator 1010 – 1014 101 – 105 Amorphous Si Insulator 1014 – 1022 1 – 10 SiO2, Si3N4, Instructor: Pei-Wen Li Dept. of E. E. NCU Solid-State Electronics Chap. 1

Mechanical Classification Based on the atomic forces (binding force) that bind the atom together, the crystals could be divided into: Crystal of Inert Gases (Low-T solid): Van der Wall Force: dipole-dipole interaction Ionic Crystals (8 ~ 10 eV bond energy): Electrostatic force: Coulomb force, NaCl, etc. Metal Crystals Delocalized electrons of high concentration, (1 e/atom) Hydrogen-bonded Crystals ( 0.1 eV bond energy) H2O, Protein molecules, DNA, etc. Instructor: Pei-Wen Li Dept. of E. E. NCU Solid-State Electronics Chap. 1

Binding Force Bond energy is a useful parameter to provide a qualitative gauge on whether The binding force of the atom is strong or weak; The bond is easy or hard to be broken by energetic electrons, holes, ions, and ionizing radiation such as high-energy photons and x-ray. In semiconductors, bonds are covalent or slightly ionic bonds. Each bond contains two electrons—electron-pair bond.A bond is broken when one of its electron is removed by impact collision (energetic particles) or x-ray radiation, —dangling bond. Instructor: Pei-Wen Li Dept. of E. E. NCU Solid-State Electronics Chap. 1

Semiconductors for Electronic Device Application For electronic application, semiconductors must be crystalline and must contain a well-controlled concentration of specific impurities. Crystalline semiconductors are needed so the defect density is low. Since defects are electron and hole traps where e--h+ can recombine and disappear, short lifetime. The role of impurities in semiconductors: To provide a wide range of conductivity (III- B or V-P in Si). To provide two types of charge carriers (electrons and holes) to carry the electrical current , or to provide two conductivity types, n-type (by electrons) and p-type (by holes) Group III and V impurities in Si are dopant impurities to provide conductive electrons and holes. However, group I, II, and VI atoms in Si are known as recombination impurities (lifetime killers)when their concentration is low. Instructor: Pei-Wen Li Dept. of E. E. NCU Solid-State Electronics Chap. 1

Crystal Lattices A crystal is a material whose atoms are situated periodically on interpenetrating arrays of points known as crystal lattice or lattice points. The following terms are useful to describe the geometry of the periodicity of crystal atoms: Unit cell; Primitive Unit Cell Basis vectors a, b, c ; Primitive Basic vectors Translation vector of the lattice; Rn = n1a +n2b +n3c Miller Indices Instructor: Pei-Wen Li Dept. of E. E. NCU Solid-State Electronics Chap. 1

Basis Vectors The simplest means of representing an atomic array is by translation. Each lattice point can be translated by basis vectors, â, , ĉ. Translation vectors: can be mathematically represented by the basis vectors. Rn = n1 â + n2 + n3 ĉ, where n1, n2, and n3 are integers. Instructor: Pei-Wen Li Dept. of E. E. NCU Solid-State Electronics Chap. 1

Unit Cell Unit cell: is a small volume of the crystal that can be used to represent the entire crystal. (not unique) Primitive unit cell: the smallest unit cell that can be repeated to form the lattice. (not unique) Example: FCC lattice Instructor: Pei-Wen Li Dept. of E. E. NCU Solid-State Electronics Chap. 1

Miller Indices To denote the crystal directions and planes for the 3-d crystals. Plane (h k l) Equivalent planes {h k l} Direction [h k l] Equivalent directions <h k l> Instructor: Pei-Wen Li Dept. of E. E. NCU Solid-State Electronics Chap. 1

Miller Indices To describe the plane by Miller Indices Find the intercepts of the plane with x, y, and z axes. Take the reciprocals of the intercepts Multiply the lowest common denominator = Mliller indices Instructor: Pei-Wen Li Dept. of E. E. NCU Solid-State Electronics Chap. 1

Example Use of Miller Indices Wafer Specification (Wafer Flats) Instructor: Pei-Wen Li Dept. of E. E. NCU Solid-State Electronics Chap. 1

3-D Crystal Structures In 3-d solids, there are 7 crystal systems (1) triclinic, (2) monoclinic, (3) orthorhombic, (4) hexagonal, (5) rhombohedral, (6) tetragonal, and (7) cubic systems. Instructor: Pei-Wen Li Dept. of E. E. NCU Solid-State Electronics Chap. 1

3-D Crystal Structures In 3-d solids, there 14 Bravais or space lattices. N-fold symmetry: With 2/n rotation, the crystal looks the same! 6-fold symmetry Instructor: Pei-Wen Li Dept. of E. E. NCU Solid-State Electronics Chap. 1

Basic Cubic Lattice Simple Cubic (SC), Body-Centered Cubic (BCC), and Face-Centered Cubic (FCC) Instructor: Pei-Wen Li Dept. of E. E. NCU Solid-State Electronics Chap. 1

Surface Density Consider a BCC structure and the (110) plane, the surface density is found by dividing the number of lattice atoms by the surface area; Surface density = Instructor: Pei-Wen Li Dept. of E. E. NCU Solid-State Electronics Chap. 1

Diamond Structure (Cubic System) Most semiconductors are not in the 7 crystal systems mentioned above. Elemental Semiconductos: (C, Si, Ge, Sn) The space lattice of diamond is fcc. It is composed of two fcc lattices displaced from each other by ¼ of a body diagonal, (¼, ¼, ¼ )a lattice constant a =109.4o Instructor: Pei-Wen Li Dept. of E. E. NCU Solid-State Electronics Chap. 1

Diamond Structure Or the diamond could be visualized by a bcc with four of the corner atoms missing. Instructor: Pei-Wen Li Dept. of E. E. NCU Solid-State Electronics Chap. 1

Zinc Blende Structure (Cubic system) Compound Semiconductors: (SiC, SiGe, GaAs, GaP, InP, InAs, InSb, etc) Has the same geometry as the diamond structure except that zinc blende crystals are binary or contains two different kinds of host atoms. Instructor: Pei-Wen Li Dept. of E. E. NCU Solid-State Electronics Chap. 1

Wurzite Structure (Hexagonal system) Compound Semiconductors (ZnO, GaN, ALN, ZnS, ZnTe) The adjacent tetrahedrons in zinc blende structure are rotated 60o to give the wurzite structure. The distortion changes the symmetry: cubic hexagonal Distortion also increase the energy gap, which offers the potential for optical device applications. Instructor: Pei-Wen Li Dept. of E. E. NCU Solid-State Electronics Chap. 1

Reciprocal Lattice Every crystal structure has two lattices associated with it, the crystal lattice (real space) and the reciprocal lattice (momentum space). The relationship between the crystal lattice vector ( ) and reciprocal lattice vector ( ) is The crystal lattice vectors have the dimensions of [length] and the vectors in the reciprocal lattice have the dimensions of [1/length], which means in the momentum space. (k = 2/) A diffraction pattern of a crystal is a map of the reciprocal lattice of the crystal. A microscope image, if it could be resolved on a fine enough scale, is a map of the crystal structure in real space. Instructor: Pei-Wen Li Dept. of E. E. NCU Solid-State Electronics Chap. 1

Diffraction Definition of scattering vector Instructor: Pei-Wen Li Dept. of E. E. NCU Solid-State Electronics Chap. 1

Reciprocal Lattice Outing beam vector Reciprocal lattice vector Incident x-ray beam vector, Instructor: Pei-Wen Li Dept. of E. E. NCU Solid-State Electronics Chap. 1

Example Consider a BCC lattice and its reciprocal lattice (FCC) Similarly, the reciprocal lattice of an FCC is BCC lattice. Instructor: Pei-Wen Li Dept. of E. E. NCU Solid-State Electronics Chap. 1