Alain Coc CSNSM (Centre de Sciences Nucléaires et de Sciences de la Matière, Orsay) +material from: F. Hammache, N. de Séréville, F. de Oliveira, V. Tatischeff,

Slides:



Advertisements
Similar presentations
Proposal for the Establishment and Funding of the Cluster of Excellence Origin and Structure of the Universe The Cluster of Excellence for Fundamental.
Advertisements

University of Surrey Nuclear Physics Research Group Nuclear theory group (2 Professors (Al-Khalili & Tostevin) ; 2 Senior Lecturers (Stevenson & Barbieri),
Classical novae, type I x-ray bursts, and ATLAS Alan Chen Department of Physics and Astronomy McMaster University.
N Network for Active Targets 12 institutions (France, Spain, UK, Germany, Poland) GANIL, France CENBG Bordeaux, France SPhN/DAPNIA/DSM Saclay, France IPN.
Low energy radioactive beams Carmen Angulo, CRC Louvain-la-Neuve, Belgium FINUPHY meetingLouvain-la-Neuve, Belgium3-4 May 2004 Recent highlights on nuclear.
Branchings, neutron sources and poisons: evidence for stellar nucleosynthesis Maria Lugaro Astronomical Institute University of Utrecht (NL)
New Frontiers in Nuclear and Particle Astrophysics: Time varying quarks MHD Jets Neutrino Mass Hierarchy G. J. Mathews – UND OMEG5-I Nov. 18, 2011 NAOJ,
GEOL3045: Planetary Geology Lysa Chizmadia 11 Jan 2007 The Big Bang & Nucleosynthesis Lysa Chizmadia 11 Jan 2007 The Big Bang & Nucleosynthesis.
Introduction to nuclear physics Hal. Nucleosynthesis Stable nuclei.
Time dependence of SM parameters. Outline Dirac´s hypothesis SM parameters Experimental access to time dependence  laboratory measurements  Quasar absorption.
The Nucleosynthesis of Chemical Elements Dr. Adriana Banu, Cyclotron Institute February 23, Saturday Morning Physics’08.
Stellar Structure Section 6: Introduction to Stellar Evolution Lecture 17 – AGB evolution: … MS mass > 8 solar masses … explosive nucleosynthesis … MS.
12C(p,g)13N g III. Nuclear Reaction Rates 12C 13N Nuclear reactions
Your Cosmic Connection to the Elements
Physics 133: Extragalactic Astronomy and Cosmology Lecture 11; February
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
Outline  Introduction  The Life Cycles of Stars  The Creation of Elements  A History of the Milky Way  Nucleosynthesis since the Beginning of Time.
Origin of the elements and Standard Abundance Distribution Clementina Sasso Lotfi Yelles Chaouche Lecture on the Origins of the Solar Systems.
E.Chiaveri on behalf of the n_TOF Collaboration n_TOF Collaboration/Collaboration Board Lisbon, 13/15 December 2011 Proposal for Experimental Area 2(EAR-2)
Nucleosynthesis8/26/10 How did the various nuclides originate? What determines their abundance? When were the elements created? Lecture outline: 1)The.
Noyaux CERN- ISOLDE Yorick Blumenfeld.
The FAIR Chance for Nuclear Astrophysics Elemental Abundances Core-collapse Supernovae The neutrino process The r-process nuclei in -Wind Neutron Stars.
Nuclear Astrophysics with the PJ Woods, University of Edinburgh.
Stellar Fuel, Nuclear Energy and Elements How do stars shine? E = mc 2 How did matter come into being? Big bang  stellar nucleosynthesis How did different.
Making Gold : Nuclear Alchemy Prof. Paddy Regan Department of Physics University of Surrey Guildford, GU2 7XH
Chemistry Connections to the Universe Kay Neill, Presenter.
Lecture 2: Formation of the chemical elements Bengt Gustafsson: Current problems in Astrophysics Ångström Laboratory, Spring 2010.
Photonuclear reactions in astrophysics
Astrophysical p-process: the synthesis of heavy, proton-rich isotopes Gy. Gyürky Institute of Nuclear Research (ATOMKI) Debrecen, Hungary Carpathian Summer.
-NUCLEUS INTERACTIONS OPEN QUESTIONS and FUTURE PROJECTS Cristina VOLPE Institut de Physique Nucléaire Orsay, France.
Nuclear structure and fundamental interactions Solid state physics Material irradiation Micrometeorite research and study Astrophysics Nuclear astrophysics.
Advanced Burning Building the Heavy Elements. Advanced Burning 2  Advanced burning can be (is) very inhomogeneous  The process is very important to.
ESF Workshop on The future of stable beams in Nuclear Astrophysics, Athens, Dec , 2007 Stable ion beams for nuclear astrophysics: Where do we stand.
New Nuclear and Weak Physics in Big Bang Nucleosynthesis Christel Smith Arizona State University Arizona State University Erice, Italy September 17, 2010.
Lesson 13 Nuclear Astrophysics. Elemental and Isotopic Abundances.
H205 Cosmic Origins  Our last class!  Origin of the Elements  Hand in EP7 APOD Tom Lehrer's "The Elements". A Flash animation by Mike Stanfill, Private.
Nucleosynthesis and formation of the elements. Cosmic abundance of the elements Mass number.
ALNA- Accelerator Laboratory for Nuclear Astrophysics Underground Heide Costantini University of Notre Dame, IN, USA INFN, Genova, Italy.
Theory for nuclear physics and astrophysics in France Elias Khan NuPECC, October 9, 2015, Ganil 5 IPNO CEA/DAM SPhN LUTH LPC GANIL Subatech CENBG IPNL.
Lecture 10 Nucleosynthesis During Helium Burning and the s-Process.
 ( E ) = S(E) e –2   E -1 2      m  m   m   m   Reaction Rate(star)    (E)  (E) dE Gamow Peak  Maxwell Boltzmann.
 ( E ) = S(E) e –2   E -1 2       m  m   m   m   Reaction Rate(star)    (E)  (E) dE Gamow Peak  Maxwell Boltzmann.
Two types of supernovae
Massive Star Evolution overview Michael Palmer. Intro - Massive Stars Massive stars M > 8M o Many differences compared to low mass stars, ex: Lifetime.
Lecture 6 p+p, Helium Burning and Energy Generation.
Production of Beams: - Stable beams from Be-U, 48 Ca ~ pps, 238 U ~ pps ~60 A.MeV for Ni -RIB in-target fragmentation Noble gas (i.e. 6 He.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron cross sections for reading the abundance history Michael Heil Forschungszentrum Karlsruhe.
High Resolution Spectroscopy in Nuclear Astrophysics Joachim Görres University of Notre Dame & JINA.
Selected Topics in Astrophysics
Stellar Spectroscopy and Elemental Abundances Definitions Solar Abundances Relative Abundances Origin of Elements 1.
Indirect Techniques ( I) : Asymptotic Normalization Coefficients and the Trojan Horse Method NIC IX R.E. Tribble, Texas A&M University June, 2006.
Indirect measurements of the -3 keV resonance in the 13 C(α, n) 16 O reaction: the THM approach Marco La Cognata.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron capture measurements for the weak s-process Michael Heil Hirschegg workshop, January.
NUCLEAR REACTIONS OF ASTROPHYSICAL INTEREST AT LUNA D. Trezzi (for the LUNA collaboration) Università degli Studi di Milano | INFN – New Vistas in Low-Energy.
1 Cross sections of neutron reactions in S-Cl-Ar region in the s-process of nucleosynthesis C. Oprea 1, P. J. Szalanski 2, A. Ioan 1, P. M. Potlog 3 1Frank.
The 18 F(p,  ) 15 O reaction and RIB developments F. de Oliveira Santos.
David Mountford University of Edinburgh
(Some) Current Topics in Nuclear Astrophysics
the s process: messages from stellar He burning
Star Formation Nucleosynthesis in Stars
György Gyürky Institute of Nuclear Research (Atomki) Debrecen, Hungary
Nucleosynthesis Nucleosynthesis Big Bang Nucleosynthesis:
The neutron capture cross section of the s-process branch point 63Ni
Carbon, From Red Giants to White Dwarfs
Indirect reactions for the Tandem-Alto Pole of Orsay
Unit 13 Nuclear Chemistry.
Neutrino Reaction in Nuclear-Astro Physics
Building the Heavy Elements
Institut de Physique Nucléaire Orsay, France
Myung-Ki Cheoun Department of Physics,
Presentation transcript:

Alain Coc CSNSM (Centre de Sciences Nucléaires et de Sciences de la Matière, Orsay) +material from: F. Hammache, N. de Séréville, F. de Oliveira, V. Tatischeff, J. Margueron Nuclear Astrophysics in France  13 (IN2P3 & CEA) Laboratories: CENBG (Bordeaux), GANIL (Caen), LPC Caen, LPSC (Grenoble), Subatech (Nantes), LUPM (Montpellier), CSNSM (Orsay), IPNO (Orsay), LLR (Palaiseau), APC (Paris), Irfu/SPhN & Irfu/SAp (Saclay), IPHC (Strasbourg)  Collaboration with Institut National des Sciences de l'Univers (INSU) Laboratories: IAP (Paris), IRAP (Toulouse),....

 Motivations:  Source of stellar energy, stellar evolution  Origin of the elements (elemental and isotopic abundances)  Constraints on astrophysical models: Stellar surface abundances, nuclear gamma-ray emission, meteorites,…  Application in astroparticles, cosmological and fundamental physics: Cosmic rays, primordial nucleosynthesis, variation of constants,.…  An interdisciplinary domain by nature Nuclear Astrophysics

Primordial nucleosynthesis Hydrogen burning Helium burning e-process (iron peak) “x”-process (Li, Be, B): non- thermal nucleosynthesis r-process (“rapid” n-capture) s-process (“slow” n-capture) p-process (proton rich) Subsequent burning processes ( 12 C+ 12 C, 16 O+ 12 C, 16 O+ 16 O) Origin of the Elements Already a long history [B 2 FH], also in France (in the 60’s) BBN, LiBeB

Direct measurements Very small cross sections Indirect measurements Transfert reactions 13 C( 7 Li,t) 17 O [ 13 C( , n) 16 O] Resonant elastic diffusion 12 C( ,  ) 12 C [ 12 C( ,  ) 16 O] Coulomb dissociation 6 Li(  *,  )D [D( ,  ) 6 Li] Trojan Horse Method D( 7 Li,  )n [ 6 Li(p,  ) 4 He] Model dependent Gamow window Direct/indirect measurements 12 C( ,  ) 16 O, 14 C( ,  ) 18 O, 18 O( ,  ) 22 Ne et 22 Ne( ,  ) 26 Mg NUPPEC Long Range Plan Most important reactions Required precision: 10 %

 BBN calculation of of 4 He, D, 3 He, 7 Li primordial abundances at Planck baryonic density compared with observations.  Used to constrain new physics e.g. variation of “constants”, exotic particles,..., but...  The Lithium Problem: a factor of 3 7 Li overproduction  Observations? New physics? or  A nuclear solution ? New 7 Be destruction channels (decays to 7 Li) 7 Be+ 3 He→ 10 C*, 7 Be+α→ 11 C* Primordial Nucleosynthesis 7 Li from 7 Be decay

He shell No obvious additional state in 10 C at ~ 15 MeV nat B( 3 He,t) 11 C No additional state in 11 C at ~ 7.8 MeV If present   total  590 keV (95% CL) Rules out a nuclear solution [Hammache+ 2013] ( 3 He,t) reaction on 10,11 B targets with the Split-pole magnetic spectrometer at the Orsay Tandem Search for unknown states in 10 C and 11 C 10 B( 3 He,t) 10 C

(Explosive) Hydrogen burning: two examples Spectroscopy of 19 Ne for 18 F(p,  ) 15 O reaction Ganil experiment [Mountford+ 2012] / predictions [Dufour & Descouvemont 2007] 19 F( 3 He,t) 19 Ne experiment at Orsay [IPNO, York, Barcelona] in 2014 The 17 O(p,  ) 14 N and 17 O(p,γ) 18 F reactions (PAPAP, now at Democritos) ”on”/”off” resonnance [Chaffa+ 2005; 2007]

 s-process nucleosynthesis → half of the heavy elements  90<A<209  low mass AGB stars 1-3 M  (T  10 8 K) → neutron source 13 C( ,n) 16 O  Split-Pole Orsay Tandem : 13 C( 7 Li,t) 17 O  Drotleff 93  Brune 93 Orsay 3/2 + Gamow peak Clark et al (1/2 + ) S  =0.25S  =0.35 1/2 + The crucial role of the MeV sub-threshold state is confirmed [Pellegriti+ 2008] S(E)=E  (E)exp(2  ) 1/2 s-process neutron source: 13 C(α, n) 16 O Also applied to the most important reaction for He burning: 12 C(α, γ) 15 O [Oulebsir+ 2012]  2  ?  S  ? 13 C+  / / O+n / / / /2 -  nn E cm 0.0 5/ O

Study of 26 Al(n,p) 26 Mg and 26 Al(n,α) 23 Na  MeV from 26 Al observed (COMPTEL, INTEGRAL, RHESSI)  Origin: explosive Ne/C burning  Important: 26 Al(n,p) 26 Mg & 26 Al(n,α) 23 Na  Inelastic reaction: 27 Al(p,p') 27 Al* More than 30 new resonances above S n observed with Split-Pole: p & α in coincidence (DSSSDs) → Γ p /Γ & Γ α /Γ Opens up new possibilities e.g. Γ p /Γ for 30 P(p,γ) [Benamara+ submitted]

 No r-process path : 1000’s nuclei and 10000’s rates (n-capture, lifetimes, fission, neutrinos,....) ⇒ massive input from theory (phenomenological→microscopic) Spectroscopy, decay, masses, t1/2, Pn (ALTO, DESIR) After post-acceleration ex : 130 Cd(d,p) 131 Cd, et 134 Sn(d,p) 135 Sn (SPIRAL 2) r-process  r-process nucleosynthesis → the other half of the heavy elements  Presently most favored astrophysical origin: coalescence of two neutron stars [S. Goriely, ULB, priv. comm.]

Non thermal reactions LiBeB from CNO spallation, γ from solar flares [ 511 keV, 56 Fe*, 24 Mg*, 20 Ne*, 2.22 MeV, 12 C*, 16 O*; E/A= MeV ] and cosmic rays RHESSI Observations γ-ray production cross sections: Projectile+target = p,  + 12 C, 14 N, 16 O, Ne, 24 Mg, Si, Fe and 3 He + 16 O, 24 Mg [Benhabiles+ 2010] Energies: 5 to 25/40 MeV (Orsay) → 66 MeV (2014) and 200 MeV (2015) [iTemba, Orsay, Algiers] Total  -ray emission cross section

Nuclear physics of dense matter Adapted from Demorest et al. (2010) Nucleonic matter Exotic hadronic matter Strange- quark matter Neutron stars are the ultimate states of massive stars (i.e. with 10<M/M  <100) that exploded as SN. Nuclear conditions not reproducible in laboratory Theory [U. van Kolck talk] :  EoS of dense matter? (Internal composition, stiffness, 2 M  NS)  Transition from surface nuclei to core uniform matter via “pasta” ?  Superfluidity (cooling, “glitches”)  Electro-weak processes  Hyperonic matter Experiments:  nuclear masses, giant resonant modes, neutron-skin, pairing, beta-decay, radii,.... (GANIL- SPIRAL 2), hypernuclei,...

Other important activities in France  Theory (“diluted” matter): Shell Model, Microscopic (cluster) Model, Mass models, Hauser–Feshbach (TALYS),...  Evaluations: Masses, Thermonuclear rates  Cosmology: BBN, variation of constants  Gamma-ray astronomy:  Observations (INTEGRAL, RHESSI): solar flares, (novae)  Instrumentation: next generation of Compton Telescope  (Micro-)meteorites  Collection: Antartica or from space missions  Extinct radioactivities (→formation of the solar system)

Present and future instruments  GANIL-SPIRAL1/2 [F. de Oliveira]  Tandem-ALTO [D. Verney]  ANDROMEDE (Orsay): 1 to 4 MV Van de Graaff and 12 C + 12 C reaction  CACAO (Orsay): Radioactive target production facillity (e.g. 60 Fe, 26 Al, 44 Ti)  Laser MegaJoule (Bordeaux): screening studies, reaction rates. [Jiang+ 2010]