N.Solyak, new RTML: Ecentral ALCPG 2011,Oregon, Mar.18 1 Nikolay Solyak, Valery Kapin Andreas Latina*, Yuri Alexahin FERMILAB * CERN New design of ILC.

Slides:



Advertisements
Similar presentations
Update of RTML, Status of FNAL L-band and CLIC X-band BPM, Split SC Quadrupole Nikolay Solyak Fermilab (On behalf of RTML team) LCWS2010 / ILC 10, March.
Advertisements

1 ILC Bunch compressor Damping ring ILC Summer School August Eun-San Kim KNU.
20/03/2011 Global Design Effort 1 ALCPG11 – Eugene Positron Source N. Collomb J. Clarke, D. Angal-Kalinin,
LHeC Test Facility Meeting
Update on ILC ML Lattice Design Alexander Valishev, for the FNAL LET group FNAL AP Dept. Meeting March 7, 2007.
ILC RTML Lattice Design A.Vivoli, N. Solyak, V. Kapin Fermilab.
October 27, DESY TBR Central Region Integration Issues 1 Mark Palmer Cornell University.
8/28/07RTML EDR KOM1 Cornell Plans for RTML EDR Work G. Dugan Cornell LEPP.
October 31, BDS Group1 ILC Beam Delivery System “Hybrid” Layout 2006e Release Preliminary M. Woodley.
ILC Feedback System Studies Nikolay Solyak Fermilab 1IWLC2010, Geneva, Oct.18-22, 2010 N.Solyak.
The Overview of the ILC RTML Bunch Compressor Design Sergei Seletskiy LCWS 13 November, 2012.
Global Design Effort Dubna, 5 June 2008 Part I of Summary for WG C/D Conveners: Ewan Paterson (SLAC), Nikolay Solyak (FNAL), Andrei Seryi (SLAC), Masao.
Baseline RTML in TDR ( For discussion ) S.Kuroda ( KEK )
DESY GDE Meeting Global Design Effort 1 / 12 Status of RTML Design and Tuning Studies PT SLAC.
S2E optics design and particles tracking for the ILC undulator based e+ source Feng Zhou SLAC ILC e+ source meeting, Beijing, Jan. 31 – Feb. 2, 2007.
Status of Space-Charge Simulations with MADX Valery KAPIN ITEP & MEPhI, Moscow GSI, 19-Feb-2009
Global Design Effort - CFS ILC Accelerator Design and Integration Meeting 1 ILC AD&I MEETING CONVENTIONAL FACILITIES AND SITING GROUP UPDATE V.
N.Solyak, RTMLALCPG 2009,Albuquerque, Oct.2 1 ILC RTML Upgrade in SB2009 Nikolay Solyak Fermilab.
SINGLE-STAGE BUNCH COMPRESSOR FOR ILC-SB2009 Nikolay Solyak Fermilab GDE Baseline Assessment Workshop (BAW-2) SLAC, Jan , 2011 N.Solyak, Single-stage.
July 19-22, 2006, Vancouver KIRTI RANJAN1 ILC Curved Linac Simulation Kirti Ranjan, Francois Ostiguy, Nikolay Solyak Fermilab + Peter Tenenbaum (PT) SLAC.
Design of the Turnaround Loops for the Drive Beam Decelerators R. Apsimon, J. Esberg CERN, Switzerland.
Beam Dynamics WG K. Kubo, N. Solyak, D. Schulte. Presentations –N. Solyak Coupler kick simulations update –N. Solyak CLIC BPM –A. Latina: Update on the.
LER Workshop, October 11, 2006LER & Transfer Line Lattice Design - J.A. Johnstone1 LHC Accelerator Research Program bnl-fnal-lbnl-slac Introduction The.
10/02/2011 Global Design Effort 1 Positron Source meeting J. Clarke, D. Angal-Kalinin, N. Collomb.
1 ILC RTML overview Nikolay Solyak Fermilab RTML Lattice update in TDR Emittance preservation overview Other effects Conclusion ECFA Linear Collider Workshop.
N.Solyak, RTMLILC AD&I meeting, DESY, May 28-29, Single-stage Bunch Compressor Nikolay Solyak Fermilab.
Ring to Main Linac (RTML): Status and Plans ILC January Meeting (KEK) Peter Tenenbaum 19-Jan-2006.
LET in the ILC DRs with Minimal Tuning Knobs and other assorted information James Jones Deepa Angal-Kalinin and Frank Jackson.
By Verena Kain CERN BE-OP. In the next three lectures we will have a look at the different components of a synchrotron. Today: Controlling particle trajectories.
Status of RTML design in TDR configuration A.Vivoli, N. Solyak, V. Kapin Fermilab.
Emittance preservation in the RTML of ILC and CLIC Andrea Latina (CERN) Nikolay Solyak (FNAL) LCWS University of Texas at Arlington - Oct
28/03/20101 ILC – Central Integration SB 2009 Layout Interpretation of available data into CAD 3D virtual model to serve as true scale graphical representation.
IWLC10, 18 th -22 nd October10, CERN/CICG 1 Global Design Effort Updates to ILC RDR Beam Delivery System Deepa Angal-Kalinin & James Jones ASTeC, STFC.
N.Solyak, RTMLCLIC 08, CERN, Oct , RTML Design and Rational for ILC Nikolay Solyak Fermilab CLIC 08 workshop, CERN, Oct , 2008.
Accumulator & Compressor Rings with Flexible Momentum Compaction arccells MAP 2014 Spring Meeting, Fermilab, May 27-31, 2014 Y. Alexahin (FNAL APC)
N.Solyak, RTMLLCWS’08, Chicago Nov.16-20, RTML progress 2008 Nikolay Solyak.
Dark Current in ILC Main Linac N.Solyak, A.Sukhanov, I.Tropin ALCW2015, Apr.23, 2015, KEK LCWS'15, Tsukuba, 04/2015Nikolay Solyak1.
N.Solyak, RTMLLCWS'11, Sept.26-30, Granada 1 Nikolay Solyak, Valery Kapin FERMILAB * CERN RTML upgrade New design of ILC RTML in central integration region.
Design of Transfer Line-2 (TL-2) for CLIC Test Facility – 3 (CTF-3) Amalendu Sharma, A.Rahim, A.D.Ghodke and Gurnam Singh IOAPDD Raja Ramanna Centre for.
Arun Saini, N. Solyak Fermi National Accelerator Laboratory
Specifications for Central Region Layout
ILC-CR-0004 Main Linac extension: Implementation status
Orbit Response Matrix Analysis
Orthogonal Correctors in ILC Main Linac
eRHIC FFAG Lattice Design
Benchmarking MAD, SAD and PLACET Characterization and performance of the CLIC Beam Delivery System with MAD, SAD and PLACET T. Asaka† and J. Resta López‡
Emittance Dilution and Preservation in the ILC RTML
LCLS2sc MAD files: Injector to Bypass Line
ILC Z-pole Calibration Runs Main Linac performance
Acknowledgements and credits to: W. Herr, B. Holzer, A. Streun, A
Large Booster and Collider Ring
RTML Design and Cost reduction Nikolay Solyak Fermilab
Alternate Lattice for LCLS-II LTU Y
AD & I : BDS Lattice Design Changes
RTML and Main Linac Design (2.6.1 and 2.7.1)
XII SuperB Project Workshop LAPP, Annecy, France, March 16-19, 2010
Interaction region design for the partial double ring scheme
Collider Ring Optics & Related Issues
Negative Momentum Compaction lattice options for PS2
Comparison of NMC rings for PS2
IR Lattice with Detector Solenoid
Towards an NMC Ring: Dispersion suppressor & long straight section
Negative Momentum Compaction lattice options for PS2
Feasibility of Reusing PEP-II Hardware for MEIC Electron Ring
Fanglei Lin MEIC R&D Meeting, JLab, July 16, 2015
G.H. Wei, V.S. Morozov, Fanglei Lin Y. Nosochkov (SLAC), M-H. Wang
Integration of Detector Solenoid into the JLEIC ion collider ring
JLEIC Electron Ring Nonlinear Dynamics Work Plan
Upgrade on Compensation of Detector Solenoid effects
Fanglei Lin JLEIC R&D Meeting, August 4, 2016
Presentation transcript:

N.Solyak, new RTML: Ecentral ALCPG 2011,Oregon, Mar.18 1 Nikolay Solyak, Valery Kapin Andreas Latina*, Yuri Alexahin FERMILAB * CERN New design of ILC RTML in central integration region (“Ecentral” beamline)

N.Solyak, new RTML: Ecentral matching ALCPG 2011,Oregon, Mar.18 2 Changes of RTML lattice in central area SB2009 baseline proposal: New configuration of the DR DR has same elevation as ML

Dubna, 5 June 2008 Global Design Effort DR-to-RTML connection (RDR) KAS RTML: “DR stretch” ~500 m RTML Escalator~ 600 m LTR Skew+Diagn+Coll.~500m

Dubna, 5 June 2008 Global Design Effort “Getaway” and “Escalator” in RDR Beam collimation DR stretch. ~ 500 m Skew correctors Diagnostics Escalator ~ 600m Skew corr.~27m Diagnostics ~40m Zoom

N.Solyak, new RTML: Ecentral matching ALCPG 2011,Oregon, Mar.18 5 RTML lattice redesign in central area Works for “ecentral” beam-line: Preserve all basic functionalities of RDR design -The basic lattice modules forming the “ecentral” beam-line have been borrowed from the RDR 2007 baseline design Geometry matching for a new RTML via appropriate arrangements of borrowed modules (done by A. Latina*) Matching of Twiss parameters between modules of “ecentral” line are presented here * A. Latina, archive file “RTML_Central_Lattice.tgz”, 2-Nov-2010

N.Solyak, RTML ALCPG 2009,Albuquerque, Oct.2 6 Turnaround with Spin Rotator Spin Rotator R ~ 200 m Vertical off-set  y = 2.14 m Vertical dogleg ML RTML Horizontal off-set between RTML and ML increased to ~2m Horizontal off-set ~ 2m R~30 m

N.Solyak, RTML ALCPG 2009,Albuquerque, Oct.2 7 RTML configuration in Central Area

N.Solyak, RTML ALCPG 2009,Albuquerque, Oct.2 8 RTML configuration in Central Area Vertical dogleg - 50 m Extraction Line – 50 m

N.Solyak, RTML ALCPG 2009,Albuquerque, Oct.2 9 RTML configuration in Central Area Skew correction & Beam Diagnostics - 60m Collimation – 400m

N.Solyak, RTML ALCPG 2009,Albuquerque, Oct.2 10 RTML configuration in Central Area RTML Return Line

N.Solyak, new RTML: Ecentral matching ALCPG 2011,Oregon, Mar Steps for Twiss matching Extraction of Twiss parameters at boundaries of borrowed modules using MAD8 lattices for 2007 design of “getaway”, “TURNaround” and “ELBC1” extraction lines. Most of matching sections are Quad. Doublets Approximate doublet parameters via a numerical implementations of semi-analytical solutions* for quadrupole doublets Refined solutions via numerical optimizations using MAD8 matching commands Global coordinates of modules via MAD8 survey * Ph.J.Bryant, K.Johnsen, "The principles of circular accelerators and storage rings", Cambr. Univ. Press, 1993

N.Solyak, new RTML: Ecentral matching ALCPG 2011,Oregon, Mar DR exit & global coordinate system S.Guiducci, Sept. 2010: Boundary DR & RTML should be relocated to the exit of the extraction septa. Global coord. origin -> center of DR straight section “DR-exit” with D x compensation are included in RTML RTML start (in MAD8 conventions): {X,Y,Z}=(0.508;0;87.9); {  xz  yz  xy  ={0.054;0;0 } DR-end: MAD8 file: “EXT_RTML: S=87.90;  x =73.77;  x = ; DX=-0.49; DPX=0.20E-02;  y =17.18;  y =-1.33; DX=-0; DPX=0. X=508.8mm; PX=54 mrad

N.Solyak, new RTML: Ecentral matching ALCPG 2011,Oregon, Mar “Ecentral” modules & matching sections MATCH1 “DRexit” (Dx→0)+ “Q-dblt”+ “oppos_line” (  → 0) 1 st hor. arcH-Dogleg*: “ TURNMATCHR”+ “TURNCELLR”+”TURNSUPPR” MATCH2Matching quadrupole doublet (“Q-dblt”) EXTRACTIONfrom “BC1_EXT” MATCH2aMatching quadrupole doublet (“Q-dblt”) VDOGVDOG(2 arcs of vert. dogleg*) ; 7cells of VDOGFODO MATCH3“QF” (continuation of VDOGFODO)+ “Q-dblt” 2 nd hor. arcH-Dogleg*: “ TURNMATCH”+ “TURNCELL”+”TURNSUPP” MATCH4Matching quadrupole doublet (“Q-dblt”) Match to SCS  4 matching quadupoles Skew corr.sec.  with “4 skew corr. Quads” + “4 wire scanners” Match to DRS  Match to DR stretch including 4-bend chicane DR stretch  including post-DR collimation of halo * Borrowed from TURNAROUND RDR;  borrowed from “egetaway”

N.Solyak, new RTML: Ecentral matching ALCPG 2011,Oregon, Mar “ecentral” layout (via MAD-8 survey) DR ML tunnel

N.Solyak, new RTML: Ecentral matching ALCPG 2011,Oregon, Mar “ecentral” layouts in details

N.Solyak, new RTML: Ecentral matching ALCPG 2011,Oregon, Mar The global coordinates of the section boundary markers. Global coordinates in MAD-conventions:  – angle of rotation about the vertical Y-axis;  – elevation angle  - roll angle. 

N.Solyak, new RTML: Ecentral matching ALCPG 2011,Oregon, Mar “ecentral”: Twiss parameters Matched Twiss parameters along the matched “ecental” beam-line

N.Solyak, new RTML: Ecentral matching ALCPG 2011,Oregon, Mar MATCH1: Twiss parameters at boundaries DR-end: MAD8 file: “EXT_RTML: S=87.90;  x =73.77;  x = ; DX=-0.49; DPX=0.20E-02;  y =17.18;  y =-1.33; X=508.8mm; PX=54.0mrad _ETURNaround_summary_VK.doc MATCH1: “DRexit” (Dx→0)+ “Q-dblt”+ “oppos_line” (  → 0) 1st arc H-Dogleg: “TURNMATCHR” (S= ) “TURNCELLR” (S= ) ”TURNSUPPR” (S= )

N.Solyak, new RTML: Ecentral matching ALCPG 2011,Oregon, Mar “TURNMATCHR”+“TURNCELLR”+”TURNSUPPR” from “ETURNaround” line

N.Solyak, new RTML: Ecentral matching ALCPG 2011,Oregon, Mar MATCH1: Twiss parameters CD: a) make beam-line line parallel to DR straight section (azimuth  →0) b) translate  – values AB: 4Quad+Bend => Dx, D’x->0 BC: Q-doublet ( ,  -matching)

N.Solyak, new RTML: Ecentral matching ALCPG 2011,Oregon, Mar MATCH1 layouts Projection of MATCH1 on horizontal plane X0Z and cumulative length sumL Bend1: Initial  54mrad is increased Bend2 & Bend3:  →0 in two steps => Beam line becoms || to DR’s straight section Dependence of  (rotation about the vertical Y-axis ) on the Z-coordinate.

N.Solyak, new RTML: Ecentral matching ALCPG 2011,Oregon, Mar Matching methods The matching of the “DRexit_line_1”(Dx→0, D’x→0) and “Oppos_line” (Q-triplet & 2 bends) performed purely numerically with minimization algorithms (MAD8 matching); 2 steps matching for “DRexit_line_2” (quadrupole doublet): * Ph.J.Bryant, K.Johnsen, "The principles of circular accelerators and storage rings", a) approximate semi- analytical solutions* for Q-doublet (thin quadrupoles); b) refined numerical solutions using MAD8 matching commands (thick quadrupoles)

N.Solyak, new RTML: Ecentral matching ALCPG 2011,Oregon, Mar Q-doublet: analytical solution The pure numeric matching with the MAD code may require a lot of efforts and can not guarantee optimum results The analytic solutions act as design guides. * Ph.J.Bryant, K.Johnsen, "The principles …", p The analytic solution for Q-doublet is formulated using the “mismatch factor” Eq. (4.97)*: Example*: Table-based search for solution. Search for solution with contour-plot (computer algebra software Maple-V) for modified “mismatch factor”: phase advances in x,y planes

N.Solyak, new RTML: Ecentral matching ALCPG 2011,Oregon, Mar Solution lines (Match1 Q-dblt) Contour plot for the left-bottom blue island with The solution line defines a continuous solution set for all doublet parameters:

N.Solyak, new RTML: Ecentral matching ALCPG 2011,Oregon, Mar Working point (Match1 Q-dblt) Presently, working point has minimal phase advances (0.20; 1.15). It is featured: a) near low density counters; b) small total length L 2Q; c) small gradients modules; Possible prescriptions for choice of working point: minimal phase advances; minimal Q-gradients; optimal total length; solution sensitivity: a) lowest density of counters; b) optimal ratio “output/input” for some Twiss parameters Elements of sensitivity matrix (1-input; 2-output)

N.Solyak, new RTML: Ecentral matching ALCPG 2011,Oregon, Mar Solution refining with MAD8 matching The doublet parameters from approximate analytical solutions (for thin Qs) – are refined with MAD-8 matching commands (for thick-quadrupoles). Constant parameters: the total length of doublet L2Q and distance between their centers l3 4 variable parameters: two lengths and two gradients The refining matching with MAD-8 did not meet any difficulties providing small corrections to initial values (< 30%). Similar situation for other doublets: Match2, Match2a, Match3, Match4. Refining results with MAD8 matching

N.Solyak, new RTML: Ecentral matching ALCPG 2011,Oregon, Mar MATCH2: Q-doublet before EXTRACTION * _ETURNaround_summary_VK.doc “EXTRACTION” borrowed from “BC1_EXT” RDR (S= m)*

N.Solyak, new RTML: Ecentral matching ALCPG 2011,Oregon, Mar MATCH2: solution for Q-dblt

N.Solyak, new RTML: Ecentral matching ALCPG 2011,Oregon, Mar MATCH2a: Q-doublet between Extraction & VDOG “VDOG” borrowed from “ETURNaround” S= m; VDOGFODO – periodical structure generated by A.L.

N.Solyak, new RTML: Ecentral matching ALCPG 2011,Oregon, Mar MATCH2a: solution for Q-dblt

N.Solyak, new RTML: Ecentral matching ALCPG 2011,Oregon, Mar MATCH3: Q-doublet before 2 nd arc of H-dogleg “2 nd arc of H-dogleg” borrowed from “aTURNaround” (S= m; m; m) MATCH3: “QF” (added to end of VDOGFODO)+ +“Q-dblt”

N.Solyak, new RTML: Ecentral matching ALCPG 2011,Oregon, Mar MATCH3: solution for Q-dblt

N.Solyak, new RTML: Ecentral matching ALCPG 2011,Oregon, Mar MATCH4: Q-doublet after 2 nd arc of H-dogleg “Match-to-skew section” borrowed from “eGETAWAY” MATCH4: “Q-dblt”

N.Solyak, new RTML: Ecentral matching ALCPG 2011,Oregon, Mar MATCH4: solution for Q-dblt Solution lines: 2 double valued curves => the function with 4 branches similar L 2Q ~ m Curve on the left blue island: Lower branch => lower gradients | | vs. | |

N.Solyak, new RTML: Ecentral matching ALCPG 2011,Oregon, Mar Summary Lattice design for RTML line in central area: Most of modules have been adopted from RDR lattice (“eTURNaround”, “eGetaway”) Initial part of RTML at DR exit (MATCH1) has been redesigned Geometry of “ecentral” matches to overall RTML dimensions Geometry should be further refined in terms of geometry neighboring beam-lines and DRs. Matching of TWISS parameters between neighboring modules has been performed Most of matching section is based on quadrupole doublets Analytical method for evaluation of doublet parameters is implemented. Parameters of doublet are refined using matching routines of MAD8