From the nucleus to the quarks Roy J. Holt Achievements and Future Directions in Subatomic Physics: A Workshop in honor of Tony Thomas’ 60 th birthday Adelaide February 2010
Argonne National Laboratory 2 Tony’s perspective (ca. 1977) Courtesy of J. Carlson Happy Birthday!
Argonne National Laboratory 3 Nucleon-Nucleon Models Hadronic Probes Neutron Target Subnucleonic Effects Standard Model The Deuteron has an Extraordinary Role in Nuclear Physics
Argonne National Laboratory 4 Tony’s 1977 letter on pion-deuteron scattering “It [t 20 ] is a very interesting quantity to measure …”
Argonne National Laboratory 5 Scattering from aligned Deuterons M S =1, -1 M S =0 Spin 1 nucleus: M S = 1 M S = 0 M S =-1
Argonne National Laboratory 6 Los Alamos Meson Physics Facility (LAMPF) Series of three pion-deuteron scattering experiments at LAMPF Exp. 388 (LEP) Exp. 483 (LEP) Exp. 673 (P 3 )
Argonne National Laboratory 7 Issues in Pion-Deuteron Elastic Scattering (ca. 1982) Pion Absorption Dibaryon Resonances?? Exact three-body calculations –Afnan, Thomas,… Relativistic Include absorption –Rinat, Thomas et al. –Giraud et al –Blankleider and Afnan –Betz and Lee –Lee and Matsuyama –Garcilazo d d 1 D 2, 3 F 3, …
Argonne National Laboratory 8 Polarization in Pion-Deuteron Elastic Scattering R. J. Holt et al, PRL 43 (1979) 1229 R. J. Holt et al, PRL 47 (1981) 472 E. Ungricht et al, PRL 52 (1984) 333 The LAMPF Experiments First polarization experiments in pion-deuteron scattering
Argonne National Laboratory
Argonne National Laboratory 10 Pion-Deuteron Scattering Puzzle E. Ungricht et al, PRC 31 (1985) 934 Calculations that don’t include pion absorption agree best with the data!! Betz & Lee Blankleider & Afnan Fayard et al Rinat et al Garcilazo Confirmed by TRIUMF data: G. Smith et al, PRC 38 (1988) 251. Jennings & Rinat, NP A (1988)
Argonne National Laboratory 11 Elastic Scattering from the Deuteron Cross section depends on three electromagnetic form factors: e’ e q=p e -p e ’ dd’ Electron-deuteron scattering Measure another quantity: Scatter from aligned deuterons M S =1, -1 M S =0
Argonne National Laboratory 12 Issues in Electron-Deuteron Elastic Scattering Meson-Exchange Models –Wiringa, Schiavilla, et al. –Chung, Coester, Polyzou, Hummel, Tjon, Phillips, Wallace, Gross, van Orden, et al. QCD Inspired Models –Reduced Nuclear Amplitudes Brodsky, Chertok, Hiller, Ji –Constituent Counting Rule Brodsky, Farrar, LePage, Matveev et al
Argonne National Laboratory 13 First t 20 Experiment in Electron-Deuteron Scattering M. E. Schulze et al., PRL 52 (1984) First experiment in the South Hall at MIT-Bates
Argonne National Laboratory 14 Polarized Deuterium Gas Target in the VEPP-3 Electron Storage Ring Argonne-Novosibirsk Collaboration R. Gilman et al., PRL 65 (1990) 1733 First use of a storage cell for polarized gas targets in a storage ring Proof of principle for HERMES: DESY PRC 2 GeV 200 mA
Argonne National Laboratory 15 Polarized Deuterium Gas Target in VEPP-3 D. Nikolenko et al, PRL 90 (2003) Last published T 20 measurement in e-d scattering!
Argonne National Laboratory 16 World’s Data for Electron-Deuteron Scattering
Argonne National Laboratory 17 Technology led to worldwide programs Neutron and Deuteron Polarimeters Storage Cells in Storage Rings Laser-Driven Target Novosibirsk HERMES at DESY MIT-Bates IUCF Cooler LAMPF SIN/PSI TRIUMF Jefferson Lab NIKHEF Argonne
Argonne National Laboratory 18 Two photon exchange in e-p elastic scattering P. G. Blunden et al, PRC 72 (2005) A.V. Afanasev et al, PRD 72 (2005) J. Arrington et al, PRC 76 (2007) J. Carlson, M. Vanderhaeghen, Annu. Rev. Nucl. Part. Sci. 57 (2007) 171 Golden mode: positron and electron elastic scattering from the proton Rosenbluth data Polarization transfer data Courtesy of W. Melnitchouk Three new experiments: BINP Novosibirsk – internal target JLab Hall B – LH2 target, CLAS DESY (OLYMPUS) - internal target
Argonne National Laboratory 19 Very preliminary Novosibirsk data e + -p/e - - p cross section ratio J. Arrington, L. M. Barkov, V. F. Dmitriev, V. V. Gauzshtajn, R. A Golovin, A. V. Gramolinv, R. J. Holt, V. V. Kaminsky, B. A. Lazarenko, S. I. Mishnev, N. Yu. Muchnoi, D. M. Nikolenko, A. V. Osipov, I. A. Rachek, R. Sh. Sadykov, Yu. V. Shestakov, V. N. Stibunov, H. de Vries, S. A. Zevakov, V. N. Zhilich ANL, BINP, INP TPU, NIKHEF
Argonne National Laboratory 20 Fast forward – Jefferson Lab
Argonne National Laboratory 21 Deep Inelastic Scattering and Structure Functions Proton structure function: Neutron structure function (isospin symmetry): Ratio: Nachtmann inequality: Focus on high x: leptonic hadronic Parton model:
Argonne National Laboratory 22 The Neutron Structure Function at high x SU(6) symmetry pQCD Scalar di-quark Reviews: N. Isgur, PRD 59 (1999), S Brodsky et al NP B441 (1995), W. Melnitchouk and A. Thomas PL B377 (1996) 11.
Argonne National Laboratory 23 Extractions with modern deuteron wave functions Courtesy of J. Arrington J. Arrington et al, J. Phys. G 36 (2009) The ratio at high x has a strong dependence on deuteron structure. Lorentz invariant convolution relation Light front with null plane kinematics
Argonne National Laboratory 24 Nuclear Physicists’ Approach to F 2n Problems: –The proton experiments are difficult and costly. –The deuteron experiments present extraction complications. Nuclear physicists’ solution: Add another nucleon. I. Afnan et al, PRC 68 (2003)
Argonne National Laboratory 25 Ratio of 3 He, 3 H JLab E Measure F 2 ’s and form ratios: Form “super-ratio”, r, then where Theoretically, I. Afnan et al, PRC 68 (2003)
Argonne National Laboratory 26 E Projected Results JLab E , G. Petratos, J. Gomez, R. J. Holt, R. Ransome et al
Argonne National Laboratory 27 Tritium target design must pass safety hurdle at JLab Tritium Target Task Force E. J. Beise (U. of Maryland) B. Brajuskovic (Argonne) R. J. Holt (Argonne) W. Korsch (U. of Kentucky) D. Meekins (JLab) T. O’Connor (Argonne) G. G. Petratos (Kent State U.) R. Ransome (Rutgers U.) P. Solvignon (JLab) B. Wojtsekhowski (JLab) Review: June 2010
Argonne National Laboratory 28 Tritium Targets at Electron Accelerators LabYearQuantity (kCi) Thickness (g/cm 2 ) Current ( A) Current x thickness ( A-g/cm 2 ) Safe FOM ( A- g/cm 2 /kCi) Stanford HEPL MIT-Bates Saclay JLab201? JLab also has a huge spectrometer acceptance advantage, eg. SBS
Argonne National Laboratory 29 Summary Tony and colleagues have had a profound influence on experimental nuclear physics. Pion- and electron-deuteron scattering drove polarization technology. Development of the polarization technology has been extraordinarily fruitful – HERMES, MIT-Bates, Novosibirsk, NIKHEF, JLab,... Latest internal target experiment: best evidence for 2-photon exchange Scientific stage being set at JLab for d/u ratio measurement using polarization in isospin space: 3 H/ 3 He Happy Birthday Tony!