Институт космических исследований Российской Академии наук Необычная магнитосфера Марса – сопоставление результатов предшествующих и последних исследований.

Slides:



Advertisements
Similar presentations
1 Evolution of understanding of solar wind-gaseous obstacle interaction O. Vaisberg Space Research Institute (IKI), Moscow, Russia The third Moscow International.
Advertisements

Ionosphere, Magnetospheres & Solar Wind Interaction Ionosphere Solar Atmosphere Solar wind Magnetosphere Space Weather Reference: Planetary Sciences, I.
Hydrogen Hot Ion Precipitation in the Martian Ionosphere #P13B-1317 Christopher D. Parkinson 1, Michael Liemohn 1, Xiaohua Fang 2 1 AOSS Dept., University.
PRECIPITATION OF HIGH-ENERGY PROTONS AND HYDROGEN ATOMS INTO THE UPPER ATMOSPHERES OF MARS AND VENUS Valery I. Shematovich Institute of Astronomy, Russian.
Coestimating models of the large-scale internal, external, and corresponding induced Hermean magnetic fields Michael Purucker and Terence Sabaka Raytheon.
MAGNETIC FIELDS OF EXOPLANETS. FEATURES AND DETECTION UCM, 27th May 2014 Enrique Blanco Henríquez.
Non-magnetic Planets Yingjuan Ma, Andrew Nagy, Gabor Toth, Igor Sololov, KC Hansen, Darren DeZeeuw, Dalal Najib, Chuanfei Dong, Steve Bougher SWMF User.
Plasma layers in the terrestrial, martian and venusian ionospheres: Their origins and physical characteristics Martin Patzold (University of Cologne) and.
ESS 7 Lecture 14 October 31, 2008 Magnetic Storms
Martian Pick-up Ions (and foreshock): Solar-Cycle and Seasonal Variation M. Yamauchi(1); T. Hara(2); R. Lundin(3); E. Dubinin(4); A. Fedorov(5); R.A. Frahm(6);
Comparing the solar wind-magnetosphere interaction at Mercury and Saturn A. Masters Institute of Space and Astronautical Science, Japan Aerospace Exploration.
Solar wind interaction with the comet Halley and Venus
The Interaction of the Solar Wind with Mars D.A. Brain Fall AGU December 8, 2005 UC Berkeley Space Sciences Lab.
The ionosphere of Mars and its importance for climate evolution A community white paper for the 2009 Planetary Decadal Survey Paul Withers
Observation of Auroral-like Peaked Electron Distributions at Mars D.A. Brain, J.S. Halekas, M.O. Fillingim, R.J. Lillis, L.M. Peticolas, R.P. Lin, J.G.
Summer student work at MSSL, 2009 Kate Husband – investigation of magnetosheath electron distribution functions. Flat-topped PSD distributions, correlation.
Planetary Ionospheres Lecture 16
Ionospheric photoelectrons at Venus: ASPERA-4 observations A.J. Coates 1,2 S.M.E. Tsang 1,2, R.A. Frahm 3, J.D. Winningham 3, S. Barabash 4, R. Lundin.
Or A Comparison of the Magnetospheres between Jupiter and Earth.
Reinisch_ Solar Terrestrial Relations (Cravens, Physics of Solar Systems Plasmas, Cambridge U.P.) Lecture 1- Space Environment –Matter in.
Expected Influence of Crustal Magnetic Fields on ASPERA-3 ELS Observations: Insight from MGS D.A. Brain, J.G. Luhmann, D.L. Mitchell, R.P. Lin UC Berkeley.
Институт космических исследований Российской Академии наук О возможности моделирования изменения размеров и формы ионопаузы Венеры в цикле солнечной активности.
Anomalous Ionospheric Profiles Association of Anomalous Profiles and Magnetic Fields The Effects of Solar Flares on Earth and Mars.
Research at Boston University on the upper atmosphere of Mars Paul Withers and Majd Matta MEX Workshop ESTEC, The Netherlands.
Crustal Fields in the Solar Wind: Implications for Atmospheric Escape Dave Brain LASP University of Colorado July 24, 2003.
Space Physics at Mars Paul Withers Journal Club Research Talk Center for Space Physics, Boston University Aims: Show students how principles.
Observations of Open and Closed Magnetic Field Lines at Mars: Implications for the Upper Atmosphere D.A. Brain, D.L. Mitchell, R. Lillis, R. Lin UC Berkeley.
Mars Global Surveyor Magnetometer - PI: M. Acuna.
Magnetospheric Morphology Prepared by Prajwal Kulkarni and Naoshin Haque Stanford University, Stanford, CA IHY Workshop on Advancing VLF through the Global.
Use of Martian Magnetic Field Topology as an Indicator of the Influence of Crustal Sources on Atmospheric Loss D.A. Brain, D.L. Mitchell, R. Lillis, R.
November 2006 MERCURY OBSERVATIONS - JUNE 2006 DATA REVIEW MEETING Review of Physical Processes and Modeling Approaches "A summary of uncertain/debated.
The Martian Ionosphere in Regions of Crustal Magnetic Fields Paul Withers, Michael Mendillo, Dave Hinson DPS 2004, Louisville, Kentucky,
Sponge: List the six layers of the Earth.. Atmosphere A mixture of gases: N 2 78% O 2 21% Ar0.9% CO %
The EUV impact on ionosphere: J.-E. Wahlund and M. Yamauchi Swedish Institute of Space Physics (IRF) ON3 Response of atmospheres and magnetospheres of.
1 Origin of Ion Cyclotron Waves in the Polar Cusp: Insights from Comparative Planetology Discovery by OGO-5 Ion cyclotron waves in other planetary magnetospheres.
An Atmospheric Vortex as the Driver of Saturn’s Electromagnetic Periodicities: 1. Global Simulations Xianzhe Jia 1, Margaret Kivelson 1,2, and, Tamas Gombosi.
9 May MESSENGER First Flyby Magnetospheric Results J. A. Slavin and the MESSENGER Team BepiColombo SERENA Team Meeting Santa Fe, New Mexico 11 May.
1 Mars Micro-satellite Mission Japanese micro-satellite mission to Mars to study the plasma environment and the solar wind interaction with a weakly-magnetized.
Abstract: A simple representative model of the ionosphere of Mars is fit to the complete set of electron density profiles from the Mars Global Surveyor.
Space Science MO&DA Programs - September Page 1 SS It is known that the aurora is created by intense electron beams which impact the upper atmosphere.
The ionosphere of Mars never looked like this before Paul Withers Boston University Space Physics Group meeting, University of Michigan.
Адиабатический нагрев электронов в хвосте магнитосферы. Физика плазмы в солнечной системе» февраля 2012 г., ИКИ РАН Зеленый Л.М., Артемьев А.В.,
Energy conversion at Saturn’s magnetosphere: from dayside reconnection to kronian substorms Dr. Caitríona Jackman Uppsala, May 22 nd 2008.
Earth’s Magnetosphere NASA Goddard Space Flight Center
A new concept radio occultation experiment to study the structure of the atmosphere and determine the plasma layers in the ionosphere. Gavrik A.L. Kotelnikov.
ESS 7 Lectures 21 and 22 November 21 and 24, 2008 The Planets
Abstract Dust storms are well known to strongly perturb the state of the lower atmosphere of Mars, yet few studies have investigated their impact on the.
Space Weather in Earth’s magnetosphere MODELS  DATA  TOOLS  SYSTEMS  SERVICES  INNOVATIVE SOLUTIONS Space Weather Researc h Center Masha Kuznetsova.
Solar Wind Induced Escape on Mars and Venus. Mutual Lessons from Different Space Missions E. Dubinin Max-Planck Institute for Solar System Research, Katlenburg-Lindau,
Magnetic reconnection in the magnetotail: Geotail observations T. Nagai Tokyo Institute of Technology World Space Environment Forum 2005 May 4, 2005 Wednesday.
M. Yamauchi 1, H. Lammer 2, J.-E. Wahlund 3 1. Swedish Institute of Space Physics (IRF), Kiruna, Sweden 2. Space Research Institute (IWF), Graz, Austria.
Ionospheric characteristics above martian crustal magnetic anomalies Paul Withers, M Mendillo, H Rishbeth, D Hinson, and J Arkani-Hamed Abstract #33.02.
24 January, 20011st NOZOMI_MEX Science Workshop, Jan, 2001 R. Lundin, M. Yamauchi, and H. Borg, Swedish Institute of Space Physics H. Hayakawa, M.
ASEN 5335 Aerospace Environments -- Magnetospheres 1 As the magnetized solar wind flows past the Earth, the plasma interacts with Earth’s magnetic field.
Impact of CIRs/CMEs on the ionospheres of Venus and Mars Niklas Edberg IRF Uppsala, Sweden H. Nilsson, Y. Futaana, G. Stenberg, D. Andrews, K. Ågren, S.
The ionosphere of Mars and its importance for climate evolution A community white paper for the 2009 Planetary Decadal Survey Paul Withers
How the ionosphere of Mars works Paul Withers Boston University Department Lecture Series, EAPS, MIT Wednesday :00-17:00.
Earth’s Magnetosphere Space Weather Training Kennedy Space Center Space Weather Research Center.
A Global Hybrid Simulation Study of the Solar Wind Interaction with the Moon David Schriver ESS 265 – June 2, 2005.
Sponge: List the six layers of the Earth.
Plasma populations in the tail of induced magnetosphere
Planetary Ionospheres
The Wakes and Magnetotails of Venus and Mars
R. Bucˇık , K. Kudela and S. N. Kuznetsov
Energy conversion boundaries
Exploring the ionosphere of Mars
Exploring the ionosphere of Mars
Comparisons and simulations of same-day observations of the ionosphere of Mars by radio occultation experiments on Mars Global Surveyor and Mars Express.
The Vertical Structure of the Martian Ionosphere
by Andreas Keiling, Scott Thaller, John Wygant, and John Dombeck
Presentation transcript:

Институт космических исследований Российской Академии наук Необычная магнитосфера Марса – сопоставление результатов предшествующих и последних исследований М. Веригин Пятая конференция ОФН 15 «Физика плазмы в солнечной системе» 8  12 февраля 2010 г., ИКИ РАН

Содержание  Mariner 4, Марс 2, 3, 5 – ранние измерения  Марс 3 – первые наблюдения намагниченности марсианской коры 21 января, 1972  о магнитном моменте Марса  особенности околомарсианских плазменных границ: -стабильность ударной волны у терминатора; -отсутствие  V 2 инвариантности магнитопаузы; -очень большой отход ударной волны от Марса при малых M a в солнечном ветре; -олияние неоднородной намагниченности марсианской коры на положение магнитопаузы;  конкуренция двух механизмов ускорения ионов в магнитном хвосте Марса  об источниках ночной ионосферы планеты

Mariner 4, Mars 2,3,5 observations Mariner 4, July 15, 1965 Марс 2-3, 5, , 1974  Martian bow shock discovery discovery  Martian magnetosphere magnetosphere discovery discovery  multiple bow shock bow shock crossings crossings Mars Мars Мars

Strong (~27 nT) and regular magnetic field in the vicinity of Mars 3 closest (~ 1500 km) approach to the day side of the planet Mars 3 magnetospheric observations Dolginov et al., Doklady AN SSSR, 207, No.6, , 1972 Dolginov et al., JGR, 81, No.19, , 1976 Originally interpreted as an evidence of planetary dipole magnetic field M m = 2.4x10 22 G cm 3 Later Russell et al. (GRL, 5, No.1, 81-84, 1978) inferred that “…observed magnetic field was draped over the Martian obstacle as expected if the field were simply shocked and compressed solar wind magnetic field.”

Magnetic field direction has discon- tinuity around the Mars 3 closest approach region (orange arrows) Inconsistency with simple IMF draping Magnetic field direction is inconsis- tent to those one expected for simple draping in the closest approach region Mars 3, Jan. 21, 1972 Hence :  “…Mars most probably possesses a small intrinsic field magnetosphere.” Slavin & Holzer, JGR, 87, No.B12, , 1982 but:

What was below Mars 3 on Jan.21, 1972 ?  Mars 3 observed strong and regular magnetic field exactly above the region of the strongest magnetization of the Martian crust Mars 3 orbit Jan. 21, 1972 projection to surface Horizontal magnetic field Connerney et al., GRL., 28, No.21, 4015–4018, 2001 Total magnetic field

Do MGS crustal field direction corresponds to those one observed by Mars 3 ? YES !  Comparison of Mars 3 magnetic field with those one of MGS provides evidence that Mars 3 really detected the magnetic field of Martian crust in the early Verigin & Slavin, EPSC 2006-A  This observations was not properly interpreted before MGS crustal magnetization discovery.

Mars Global Surveyor : M m  2 · гс · см 3 (Acuna et al., 2001) ??? with B equat  0.5 nT but B equat ~ 10 nT (Arkani-Hamed, 2001)  M m ~ 4 · гс · см 3 Phobos 2: M m  8 · гс · см 3 magnetopause model by Verigin et al. (1997) Prior to Phobos 2: Luhmann et al., 1992 On planetary magnetic moment of Mars

  There is an essential dipole component exists in the multipole moment of planet Mars  Further methodology development is necessary for its accurate determination, including consideration of current systems produced by solar wind – Mars interaction Nothern hemisphere: “TO THE PLANET” Southern hemisphere: “FROM THE PLANET” Mars Global Surveyor Mars Global Surveyor : Connerney et al., 2001

Phobos 2 – detailed BS and MP position dependencies on  V 2 Martian magnetotail diameter D ~ 550 (  V 2 ) -1/5.9 км similar to geomagnetic tail compressibility Distance to terminator bow shock R ~ 6000 (  V 2 ) км practically independent on the  V 2 !!! Phobos 2 statistics of the bow shock and magnetopause crossings

Martian magnetopause shape and variations Phobos 2  V 2 dependent Martian magnetopause model MGS  V 2 dependent Martian magnetopause model Verigin et al., Adv. Space Res., 33, 12, 2222, 2004  Martian magnetopause is not of  V 2 invariant  Stagnation of the magnetopause nose position and increase of its curvature radius with increasing of  V 2 are explaining  V 2 independence of the bow shock terminator position, found by Phobos 2 data

Distant BS excursions at small solar wind M a values Upstream solar wind on March 24, 1989  Unusually distant Martian bow shock excursions were initiated by extremely small upstream  V 2 and M a values Verigin et al., Sp.Sci.Rev.,111, 233, Modeled typical (BS 3, MP 3 ) and distant (BS 1, MP 1 ) positions of the Martian bow shock and magnetopause

Influence of the Martian crustal magnetization on the magnetopause position  Localized Martian crust magnetization increases downstream magnetopause height by km additionally. Equatorial magnetotail diameter dependence on the longitude of the upstream terminator (Phobos 2) Increase of the magnetopause height over magnetized regions (MGS data) Verigin et al., Adv. Space Res., 28 (6), 885, 2001; 33(12), 2222, 2004.

Martian magnetotail magnetic field and plasma arrangement by IMF Schwingenschuh et al., Adv. Space Res., 12(9), 213, 1992 Yeroshenko et al., GRL, 17, No.9, 885, 1990 Mars Express ASPERA 3 experiment Barabash et al., Science 315, 502, 2007 plasma sheet

Loss of planetary ions through plasmasheet Phobos 2, Feb. – Mar. 1989, High SA Ф ~ ions/s Verigin et al., Planet. Space Sci. 39, 131, 1991 MEX, May 2004 – May 2006, Low SA Ф ~ / s / s C0 2 + / s ~ ions/s Barabash et al., Science 315, 502, 2007 Direct Simulation Monte Carlo (DSMC) + 3D Mars Thermosphere General Circulation (MTGCM) modeling Valeille, Combi, Tenishev, Bougher, Nagy, Icarus, doi: /j.icarus , 2008  Both experimental estimates are in qualitative agreement with variation of the planetary ion escape rates within solar cycle, although  the escape of Martian ions integrated over near-planetary region is only the minor part of planetary ion escape rate (Ф highSA ~ /s, Valeille, et al., 2008 ).  Direct measurement of total ion escape rate are highly welcomed.

Hot oxygen corona is the main channel of Martian ions loss – how to measure it? Solar wind pre bow shock deceleration Phobos 2, High SA Comparison with DSMC+MTGCM modeling L i ~ 4x10 6 km ! total pick-up ion flux F < 2·10 5 (10 4 km / r ) cm -2 s -1 pick-up ion number density cm -3  Measurements of pick-up ion radial profile, starting from ~ 10 6 km to Mars, can provide reliable evaluation of the total Martian ions loss rate Kotova et al., JGR, 102, A2, 2165, 1997

Competing processes of Martian plasmasheet ion acceleration 1) Magnetic field line stress acceleration  withand  2) Across magnetotail electric field E acceleration Ion energy increase  E i after its cyclotron diameter 2R c displacement across the magnetotail  

Competing processes of Martian plasmasheet ion acceleration   V 2 > 6  дин/см 2  V 2 < 6  дин/см 2 Across magnetotail electric field acceleration prevails – ”magnetospheric obstacle” Magnetic field line stress acceleration prevails – “induced obstacle”  Change of the plasmasheet ion acceleration process take place at that  V 2 value when magnetopause nose position starts to increase after its stagnation at high ram pressures Kotova et al., Phys. Chem. Earth (C), 25(1-2), 157, 2000

Martian nightside ionosphere source Martian nightside ionosphere source  Phobos 2 electron spectra measurements (HARP experiment) revealed permanent presence electron fluxes of J 0 ~ 10 8 cm -2 s -1 in the areomagnetic tail with energies sufficient for ionization of Martian neutral atmosphere constituents

Estimated peak n e max of the night- side ionization layer corresponds to that one observed by radio occultations of Mars 4,5 and Viking 1,2 spacecraft. “Why was the peak of nightside ionization observed in 100% of th s/c radio occultations at but in only 40% of radio occultations at Mars? The reason may be connected with the partial screening of the Martian nightside atmosphere by a weak intrinsic magnetic field of the planet which is completely absent in the case of Venus” Verigin et al., JGR, 96(A11), 1991 Haider et al., JGR, 97, 10637, 1992 Martian nightside ionosphere source Martian nightside ionosphere source

Leblanc et al., JGR, 111(A09313), doi: /2006JA011763, 2006 Martian nightside ionosphere source: comparison with subsequent observations Martian nightside ionosphere source: comparison with subsequent observations Magnetization of Martial crust that partially screens planetary atmosphere was really found… Acuna et al., JGR, 106(E10), 23400, 2001 Comparison of nightside low altitude electron spectra measured by MEX/ASPERA 3 and MGS/ER (thick line) with Phobos 2/HARP (color) ones used for nightside ionization calculations Brain et al., GRL, 33, L01201, 2006 Dubinin et al., Pl.Sp.Sci., 56, 846, 2008 Comparison with SPICAM UV spectroscopy measurements aboard Mars Express Detailed multi-ion nightside Martian ionosphere model is available now, considering e-impacts and galactic cosmic ray ionization until planetary surface Haider et al., JGR, 112(A12309), doi: /2007JA012530, 2007

Спасибо за внимание ! Пятая конференция ОФН 15 «Физика плазмы в солнечной системе» 8  12 февраля 2010 г., ИКИ РАН