Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Mining Positive and Negative Patterns for Relevance Feature.

Slides:



Advertisements
Similar presentations
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 A 24-h forecast of solar irradiance using artificial neural.
Advertisements

Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Validating Transliteration Hypotheses Using the Web: Web.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A novel document similarity measure based on earth mover’s.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Discovering Leaders from Community Actions Presenter : Wu, Jia-Hao Authors : Amit Goyal, Francesco Bonchi,
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Quality evaluation of product reviews using an information.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Fast exact k nearest neighbors search using an orthogonal search tree Presenter : Chun-Ping Wu Authors.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Text classification based on multi-word with support vector.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology U*F clustering : a new performant “ clustering-mining ”
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Human eye sclera detection and tracking using a modified.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. A new student performance analysing system using knowledge discovery in higher educational databases.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Probabilistic Model for Definitional Question Answering.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 TANGENT: A Novel, “Surprise-me”, Recommendation Algorithm.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Data mining for credit card fraud: A comparative study.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Web usage mining: extracting unexpected periods from web.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 A Comprehensive Comparison Study of Document Clustering.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology CONTOUR: an efficient algorithm for discovering discriminating.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. OpinionMiner: A Novel Machine Learning System for Web Opinion Mining and Extraction Presenter : Jiang-Shan.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Extracting meaningful labels for WEBSOM text archives Advisor.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Topology Preservation in Self-Organizing Feature Maps: Exact.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. A quantitative stock prediction system based on financial news Presenter : Chun-Jung Shih Authors :Robert.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. A semantic similarity metric combining features and intrinsic information content Presenter: Chun-Ping.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Automatic Recommendations for E-Learning Personalization.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. An IPC-based vector space model for patent retrieval Presenter: Jun-Yi Wu Authors: Yen-Liang Chen, Yu-Ting.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A Plagiarism Detection Technique for Java Program Using.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A k-mean clustering algorithm for mixed numeric and categorical.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. How valuable is medical social media data? Content analysis of the medical web Presenter :Tsai Tzung.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Development of a reading material recommendation system based on a knowledge engineering approach Presenter.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. TurSOM: A Turing Inspired Self-organizing Map Presenter: Tsai Tzung Ruei Authors: Derek Beaton, Iren.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 An Adaptation of the Vector-Space Model for Ontology-Based.
國立雲林科技大學 National Yunlin University of Science and Technology Self-organizing map learning nonlinearly embedded manifoldsmanifolds Author :Timo Simila.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 A Study on Automatic Recognition of Road Signs Presenter.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 2007.SIGIR.8 New Event Detection Based on Indexing-tree.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Utilizing Marginal Net Utility for Recommendation in E-commerce.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Fuzzy integration of structure adaptive SOMs for web content.
Intelligent Database Systems Lab Advisor : Dr. Hsu Graduate : Chien-Shing Chen Author : Juan D.Velasquez Richard Weber Hiroshi Yasuda 國立雲林科技大學 National.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Extreme Visualization: Squeezing a Billion Records into a Million Pixels Presenter : Jiang-Shan Wang.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Extending the Growing Hierarchal SOM for Clustering Documents.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Unsupervised word sense disambiguation for Korean through the acyclic weighted digraph using corpus and.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Psychiatric document retrieval using a discourse-aware model Presenter : Wu, Jia-Hao Authors : Liang-Chih.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Regularization in Matrix Relevance Learning Petra Schneider,
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Information Loss of the Mahalanobis Distance in High Dimensions-
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Multiclass boosting with repartitioning Graduate : Chen,
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 An initialization method to simultaneously find initial.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Region-based image retrieval using integrated color, shape,
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 A personal route prediction system base on trajectory.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Cost- sensitive boosting for classification of imbalanced.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Mining Source Code Elements for Comprehending Object- Oriented.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Direct mining of discriminative patterns for classifying.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Growing Mechanisms and Cluster Identification with TurSOM.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 TIARA: A Visual Exploratory Text Analytic System Presenter.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Towards comprehensive support for organizational mining Presenter : Yu-hui Huang Authors : Minseok Song,
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Providing Justifications in Recommender Systems Presenter.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 A Study of Learning a Merge Model for Multilingual Information.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Predicting corporate bankruptcy using a self-organizing map: An empirical study to improve the forecasting.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Text Classification Improved through Multigram Models.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Growing Hierarchical Tree SOM: An unsupervised neural.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Mining Advisor-Advisee Relationships from Research Publication.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Dual clustering : integrating data clustering over optimization.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Key Blog Distillation: Ranking Aggregates Presenter : Yu-hui Huang Authors :Craig Macdonald, Iadh Ounis.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Discovering Interesting Usage Patterns in Text Collections:
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Text Classification, Business Intelligence, and Interactivity:
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Information Extraction from Wikipedia: Moving Down the Long.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. An Integrated Machine Learning Approach to Stroke Prediction Presenter: Tsai Tzung Ruei Authors: Aditya.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Visualizing social network concepts Presenter : Chun-Ping Wu Authors :Bin Zhu, Stephanie Watts, Hsinchun.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Named Entity Disambiguation by Leveraging Wikipedia Semantic Knowledge Presenter : Jiang-Shan Wang Authors.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Enhancing Text Clustering by Leveraging Wikipedia Semantics.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Presenter : Chien-Hsing Chen Author: Geoffrey I. Webb.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A support system for predicting eBay end prices Presenter.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 f-information measures in medical image registration Presenter.
Queensland University of Technology
Presentation transcript:

Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Mining Positive and Negative Patterns for Relevance Feature Discovery Presenter : Cheng-Hui Chen Author : Yuefeng Li, Abdulmohsen Algarni, Ning Zhong KDD 2010

Intelligent Database Systems Lab N.Y.U.S.T. I. M. 2 Outlines Motivation Objectives Methodology Experiments Conclusions Comments

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Motivation  Over the years, people have often held the hypothesis that pattern-based methods should perform better than term-based ones in describing user preferences, but many experiments do not support this hypothesis.  Many text mining only consider term’s distributions. 3

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Objectives  The innovative technique presented in paper makes a breakthrough for this difficulty.  To purpose consider both term’s distributions and their specificities when we use them for text mining and classification. 4

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Methodology 5 Frequency weight Specificity Weight Specificity Weight New weight

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Definitions  Frequent pattern ─ Absolute support: ─ Relative support : ─ A termset X is called, if sup a (or sup r ) >= min_sup  Closed pattern ─ ─ Cls (X) = termset (coverset (X)) ─ A termset X is called, if and only if X = Cls (X) ─, for all pattern X 1 X  Closed sequential pattern 6

Intelligent Database Systems Lab N.Y.U.S.T. I. M. The deploying method  To improve the efficiency of the pattern taxonomy mining (PTM), an algorithm, SPMining(D+; min_sup). ─ For a given term t, its support (or called weight) in discovered patterns can be described as follow: ─ the following rank will be assigned to every incoming document d to decide its relevance. 7

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Mining Algorithms 8

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Specificity of low-level features  We define the specificity of a given term t in the training set D = D+ ∪ D- as follows: ─ 9

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Revision of discovered features  Revision of discovered Features ─ 10

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Revision Algorithms 11

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Experiments  Data ─ This research uses Reuters Corpus Volume1 (RCV1) and the 50 assessor topics to evaluate the proposed model.  Compare ─ The up-to date pattern mining ─ The well-known term-based method 12

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Experiments  The well-known term-based methods ─ The Rocchio model ─ BM25 ─ SVM 13

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Experiments 14

Intelligent Database Systems Lab N.Y.U.S.T. I. M. 15 Experiments

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Experiments 16

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Experiments 17

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Experiments 18

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Conclusions  Compared with the state-of-the-art models, the experiments on RCV1 and TREC topics demonstrate that the effectiveness of relevance feature discovery can be significantly improved by the proposed approach.  This paper recommends to classify low-level terms into three categories in order to largely improve the performance of the revision. 19

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Comments  Advantages ─ The effectiveness of relevance feature discovery can be significantly improved by the proposed approach.  Drawback ─ …  Applications ─ Text mining ─ Classification 20