1 Jets in diffraction and factorization at HERA Alice Valkárová Charles University, Prague On behalf of H1 and ZEUS collaborations.

Slides:



Advertisements
Similar presentations
ZEUS high Q 2 e + p NC measurements and high-x cross sections A.Caldwell Max Planck Institute for Physics On behalf of the ZEUS Collaboration Allen Caldwell.
Advertisements

B. List, ETH Zürich Page 1 Report from H1: PRC Open Session, H1: Status and Prospects Benno List Institute for Particle Physics, ETH Zürich.
Low x meeting, Sinai Alice Valkárová on behalf of H1 collaboration LOW x meeting 2005, Sinaia H1 measurements of the structure of diffraction.
Interjet Energy Flow. Patrick Ryan, Univ. of Wisconsin Collaboration Meeting, June 6, Patrick Ryan University of Wisconsin Claire Gwenlan Oxford.
CERN March 2004HERA and the LHC: Diffractive Gap Probability K. Goulianos1 HERA and the LHC K. Goulianos, The Rockefeller University CERN March.
ISDM 2005, Kromeriz Kamil Sedlak, Jets in photoproduction at HERA 1 Jets in Photoproduction & at low Q 2 at HERA On behalf of the H1 and ZEUS Collaborations.
1 Pierre Marage Univ. Libre de Bruxelles On behalf of the H1 and ZEUS collaborations Diffraction at HERA CIPANP 2006 Puerto-Rico 29/5-4/6/2006.
Brazil 31 Mar – 2 Apr 2004 Diffraction: from HERA & Tevatron to LHC K. Goulianos1 Diffraction: from HERA & Tevatron to LHC K. Goulianos, The Rockefeller.
Forward Jet Production at HERA, Patrick Ryan, Univ. of Wisconsin EPS2005, July 21, Patrick Ryan University of Wisconsin On Behalf of the H1 and.
Manchester Dec 2003 Diffraction from HERA and Tevatron to LHCK. Goulianos1 Konstantin Goulianos The Rockefeller University Workshop on physics with.
QCD Studies at HERA Ian C. Brock Bonn University representing the ZEUS and H1 Collaborations.
Diffractive W/Z & Exclusive CDF II DIS 2008, 7-11 April 2008, University College London XVI International Workshop on Deep-Inelastic Scattering and.
Recent Results on Diffraction and Exclusive Production from CDF Christina Mesropian The Rockefeller University.
25 th of October 2007Meeting on Diffraction and Forward Physics at HERA and the LHC, Antwerpen 1 Factorization breaking in diffraction at HERA? Alice Valkárová.
Interjet Energy Flow at ZEUS. Patrick Ryan. Univ. of Wisconsin DPF, Aug. 27, Patrick Ryan University of Wisconsin Aug. 27, 2004 Interjet Energy.
Konstantin Goulianos The Rockefeller University Diffraction at CDF and at the LHC LOW X MEETING: HOTEL VILLA SORRISO, ISCHIA ISLAND, ITALY, September 8-13.
Erik MaddoxBEACH 2004, Chicago1 Heavy flavour production at HERA Outline: Introduction Charm production Beauty production Conclusions Erik Maddox (NIKHEF/UvA)
M.KapishinDiffraction using Proton Spectrometers at HERA 1 Results on Diffraction using Proton Spectrometers at HERA Low-x Meeting: Paphos, Cyprus, June.
Paul Laycock University of Liverpool BLOIS 2007 Diffractive PDFs.
LISHEP 2009, M. Ruspa, Inclusive Diffraction at HERA Marta Ruspa (Univ. Piemonte Orientale, Italy) LISHEP 2009 Rio de Janeiro, February,
M.KapishinDiffraction and precise QCD measurements at HERA 1 Rencontres de Moriond QCD 2012 M.Kapishin, JINR on behalf of the H1 and ZEUS Collaborations.
Inclusive Jets in ep Interactions at HERA, Mónica V á zquez Acosta (UAM) HEP 2003 Europhysics Conference in Aachen, July 19, Mónica Luisa Vázquez.
Luca Stanco - PadovaQCD at HERA, LISHEP pQCD  JETS Luca Stanco – INFN Padova LISHEP 2006 Workshop Rio de Janeiro, April 3-7, 2006 on behalf of.
Working Group C: Hadronic Final States David Milstead The University of Liverpool Review of Experiments 27 experiment and 11 theory contributions.
Alice Valkárová, ÚČJF Difrakce na experimentu H1 a detektor VFPS 1.část.
16/04/2004 DIS2004 WGD1 Jet cross sections in D * photoproduction at ZEUS Takanori Kohno (University of Oxford) on behalf of the ZEUS Collaboration XII.
Factorization Breaking in Diffractive Photoproduction of Dijets Motivation Diffractive parton densities Multipomeron exchanges Direct and resolved photoproduction.
K.Hiller ISMD 2003 Cracow 1 Introduction Vector Mesons DVCS Diffractive DIS Final States: Charm & Jets Charm & JetsSummary K.Hiller DESY Zeuthen on behalf.
Heuijin LimICHEP04, Beijing, Aug. 1 Leading Baryons at HERA Introduction Diffractive structure function measured in events with a leading proton.
NEW RESULTS FROM JET PHYSICS AT HERA Thomas Schörner-Sadenius Hamburg University 2 nd HERA-LHC Workshop June 2006.
DIJET (and inclusive-jet) CROSS SECTIONS IN DIS AT HERA T. Schörner-Sadenius (for the ZEUS collaboration) Hamburg University DIS 06, April 2006 Tsukuba,
A review of diffraction at HERA
LISHEP Rio de Janeiro1 Factorization in diffraction Alice Valkárová Charles University, Prague On behalf of H1 and ZEUS collaborations.
7 th April 2003PHOTON 2003, Frascati1 Photon structure as revealed in ep collisions Alice Valkárová Institute of Particle and Nuclear Physics Charles University.
Inclusive Diffraction at HERA Marcella Capua – INFN and Calabria University Small X and Diffraction FNAL Chicago (USA) 17 – 20 September 2003 on behalf.
HERA Physics and Gustav Kramer Alice Valkárová, Charles University, Prague 2nd April 2013Festkolloquium - G.Kramer1.
DIS Conference, Madison WI, 28 th April 2005Jeff Standage, York University Theoretical Motivations DIS Cross Sections and pQCD The Breit Frame Physics.
Marta Ruspa, "Inclusive diffraction", DIS Inclusive diffraction Diffractive cross section and diffractive structure function Comparison with colour.
K. Goulianos The Rockefeller University Renormalized Diffractive Parton Densities and Exclusive Production Diffraction 2006 Milos island, Greece, 5-10.
Hard QCD and heavy flavour production at HERA (on behalf of H1 and ZEUS) A. Rostovtsev Charm production Multijet production Running α s and quark masses.
Hadron Structure 2009 Factorisation in diffraction Alice Valkárová Charles University, Prague Representing H1 and ZEUS experiments Hadron structure.
Isabell-A. Melzer-Pellmann Photon 2005, Diffractive interactions in ep collisions Diffractive interactions in ep collisions Isabell-Alissandra.
1 Diffractive dijets at HERA Alice Valkárová Charles University, Prague Representing H1 and ZEUS experiments.
Jets and α S in DIS Maxime GOUZEVITCH Laboratoire Leprince-Ringuet Ecole Polytechnique – CNRS/IN2P3, France On behalf of the collaboration On behalf of.
DIJET (and inclusive-jet) CROSS SECTIONS IN DIS AT HERA T. Schörner-Sadenius (for the ZEUS collaboration) Hamburg University DIS 06, April 2006 Tsukuba,
Results on Inclusive Diffraction From The ZEUS Experiment Data from the running period The last period with the ZEUS Forward Plug Calorimeter.
Overview of low-x and diffraction at HERA Henri Kowalski DESY Rencontres de Moriond La Thuile, March 2006.
Isabell-A. Melzer-Pellmann DIS 2007 Charm production in diffractive DIS and PHP at ZEUS Charm production in diffractive DIS and PHP at ZEUS Isabell-Alissandra.
1 Heavy Flavour Content of the Proton Motivation Experimental Techniques charm and beauty cross sections in DIS for the H1 & ZEUS Collaborations Paul Thompson.
Physics Potential of an ep Collider at the VLHC  Why ep? When?  Physics Results from the first ep Collider – HERA  Future ep Physics Priorities  Perturbative.
1 Forward Jet/  0 Production in DIS at HERA On behalf of the H1 and ZEUS Collaborations ICHEP August 2004, Beijing Didar Dobur, University of Freiburg.
A. Bertolin on behalf of the H1 and ZEUS collaborations Charm (and beauty) production in DIS at HERA (Sezione di Padova) Outline: HERA, H1 and ZEUS heavy.
Inelastic J/  with ZEUS A. Bertolin 12th International Workshop on Deep Inelastic Scattering Outlook: kinematics and production channels J/  differential.
17-20 September 2003K. Goulianos, Small x and Diffraction, Fermilab1 Konstantin Goulianos The Rockefeller University Small x and Diffraction
Costas Foudas, Imperial College, Jet Production at High Transverse Energies at HERA Underline: Costas Foudas Imperial College
Outline Motivation DDIS kinematics Introduction of different diffractive data sets Global fit procedure Results and conclusion Sara Taheri Monfared (Semnan.
Luca Stanco - PadovaLow-x at HERA, Small-x Low-x AND Low Q 2 Luca Stanco – INFN Padova Small-x and Diffraction 2007 Workshop FermiLab, March 28-30,
4/28/2005 DIS05, Diff. WG, Aharon Levy 1 Pomeron structure and diffractive parton distributions Aharon Levy with Halina Abramowicz and Michael Groys (MSc.
Low x workshop, Ischia Representing H1 and ZEUS experiments Alice Valkárová Charles University, Prague Inclusive diffraction and leading.
1 Proton Structure Functions and HERA QCD Fit HERA+Experiments F 2 Charged Current+xF 3 HERA QCD Fit for the H1 and ZEUS Collaborations Andrew Mehta (Liverpool.
Inclusive jet photoproduction at HERA B.Andrieu (LPNHE, Paris) On behalf of the collaboration Outline: Introduction & motivation QCD calculations and Monte.
Small-x Physics and Diffraction: HERA Results
Charged Current Cross Sections with polarised lepton beam at ZEUS
Aspects of Diffraction at the Tevatron
Diffraction in ep collisions
DIS 2004 XII International Workshop
Diffraction at HERA Alice Valkárová Charles University, Prague
Single Diffractive Higgs Production at the LHC *
Charged Current Cross Sections with polarised lepton beam at ZEUS
Diffractive PDF fits and factorisation tests at HERA
Presentation transcript:

1 Jets in diffraction and factorization at HERA Alice Valkárová Charles University, Prague On behalf of H1 and ZEUS collaborations

Low x workshop, Kolimpari2 HERA collider experiments 27.5 GeV electrons/positrons on 920 GeV protons → √s=318 GeV two experiments: H1 and ZEUS HERA I: 16 pb -1 e-p, 120 pb –1 e+p HERA II: ∼ 500 pb -1, ∼ 40% polarisation of e+,e- closed July 2007, still lot of excellent data to analyse…… e DIS: Probe structure of proton → F 2 Diffractive DIS: Probe structure of color singlet exchange → F 2 D

Low x workshop, Kolimpari3 W ´ HERA: ~ 10% of low-x DIS events are diffractive Diffraction and diffraction kinematics momentum fraction of color singlet exchange fraction of exchange momentum, coupling to γ* t 4-momentum transfer squared MyMy Two classes of diffractive events: Q 2 ~0 → photoproduction Q 2 >>0 → deep inelastic scattering (DIS)

Low x workshop, Kolimpari4 Diffractive Event Selection 1) Proton Spectrometers: ZEUS: LPS ( ) H1: FPS ( ),VFPS ( ) t measurement access to high x IP range free of p-dissociation background at low x IP small acceptance  low statistics ☠ 2) Large Rapidity Gap, H1, ZEUS: Require no activity beyond η max t not measured, some p-diss background ☠ 3) M x method, ZEUS: Diffractive vs non-diffractive: exponential fall off vs constant distribution in ln M x 2 Some p-diss contribution ☠ diff. non-diff e p

Low x workshop, Kolimpari5 Dijets in diffractive ep scattering photon directly involved in hard scattering x γ =1 (at parton level), due to hadronization and resolution not exactly true for measured x γ photon fluctuates into hadronic system, which takes part in hadronic scattering,dominant at Q 2 ≃ 0 x γ <1 (at parton level) x γ - fraction of photon’s momentum in hard subprocess LO DIS, direct PHPresolved PHP Pointlike photon Resolved photon

Low x workshop, Kolimpari6 QCD factorization Get PDF from inclusive diffraction predict cross sections for exclusive diffraction Hard scattering QCD matrix element,perturbatively calculated, process dependent Universal diffractive parton densities, identical for all processes → DPDFs – obey DGLAP, universal for diff. ep DIS (inclusive,dijet,charm) → universal hard scattering cross section (same as in inclusive DIS) proven for DIS (J.Collins (1998)) not proven for photoproduction!

Low x workshop, Kolimpari7 Dijets in diffractive DIS, H1 z IP is the most sensitive variable to test gluonic part of DPDFs – difference between fits A and B at high z IP. Data agree with NLO prediction, NLO with fit B is more close to data 4< Q 2 < 80 GeV < y < 0.7 x IIP < 0.03 P* tjet1 > 5.5 GeV P* tjet2 > 4 GeV -3. < η* jets < 0. Data 99/00 published, JHEP,0710:042,(2007)

Low x workshop, Kolimpari8 Dijets in diffractive DIS, H1 For z IP < 0.4 NLO predictions using fits 2006 A and B agree with data very well Combined QCD fit for inclusive and dijet DIS data….. A B jets Largest difference

Low x workshop, Kolimpari9 Data 99/00 Eur.Phys.J.C52: 83 (2007) Dijets in diffractive DIS, ZEUS E* tjet1 > 5 GeV 5 < Q 2 < 100 GeV 2 Conclusions: the best agreement of data and NLO for H fit B and MRW 2006 H1, ZEUS: for DIS dijets factorization holds….. R=data/NLO(ZEUS LPS)

Low x workshop, Kolimpari10 Photoproduction as hadronic process resolved contribution expected to be suppressed by factor 0.34 (Kaidalov,Khoze,Martin,Ryskin:Phys.Lett.B567 (2003),61) Rescattering leads to factorization breaking and rapidity gap fill up suppression of cross section ~ 1 – (rapidity survival probability) HERA resolved photoproduction Secondary interactions between spectators Jets in photoproduction thought to be ideal testing ground for rescattering Factorization broken by β dependent factor ~ 10

Low x workshop, Kolimpari11 H1: E tjet1 > 5 GeV suppression of factor ~0.5 ZEUS: E tjet1 > 7.5 GeV weak (if any) suppression ( ) Neither collaboration sees difference between the resolved and direct regions, in contrast to theory! Possible explanation of differences between H1 and ZEUS (DIS 2007) Different phase space of both analyses ……..? Dijets in photoproduction, one year ago….

Low x workshop, Kolimpari12 E t dependence of suppression? H1 and ZEUS observe the data have harder E t slope than NLO From the DIS 2008 talk of W.Slomiński, ZEUS results Double ratio NLO/data for photoproduction and DIS Very useful !!!! Cancelations of several uncertainties (DPDFs for example) Figure extracted from the published results of H1

Low x workshop, Kolimpari13 New H1 analysis – data 99/00 Tagged photoproduction, luminosity 3x larger than for 97 diffractive events found by Large Rapidity Gap method (LRG)

Low x workshop, Kolimpari14 Two cut scenarios To crosscheck previous H1 results To approach closest to ZEUS cuts

Low x workshop, Kolimpari15 No difference in survival probabilities for resolved and direct regions of x γ, like in previous H1 and ZEUS analyses Lower E t cut scenario Hadronization corrections δ hadr =MC(hadr)/MC(parton) Frixione/Ridolfi → H Fit A H Fit B H Fit Jets Kramer/Klasen → H Fit B (thanks to Michael K.) 2 programs for NLO calculations, 3 sets of DPDFs:

Low x workshop, Kolimpari16 Lower E t cut scenario Another hint of E t harder slope for data than NLO Integrated survival probabilities (ISP) Within errors no difference in ISP using different DPDFs

Low x workshop, Kolimpari17 Higher E t cut scenario Now much more „direct-like“ events than in low E t analysis, peak at higher x γ Integrated survival probabilities (ISP) Larger ISP than for lower E t cut scenario → more close to ZEUS results!!!

Low x workshop, Kolimpari18 Higher E t cut scenario E t dependence not excluded but cannot be independently verified ZEUS – W.Slomiński

Low x workshop, Kolimpari19 Do we need global suppression? M.Klasen,G.Kramer: Review of factorization breaking in diffractive photoproduction of dijets, DESY , Modern Phys.Lett.A,2008, an attempt to interprete ZEUS and H1 results with NLO resolved only suppression R=0.31 (0.29) for H1 and R=0.53 (0.45) for ZEUS publish analyses H1, 2007ZEUS, 2007

Low x workshop, Kolimpari20 Global and resolved only suppression… Global suppression 0.53 Data H1 preliminary, suppression of NLO resolved component 0.3 (see KK paper) H1 lower Et cut scenario Much worse agreement than for global suppression

Low x workshop, Kolimpari21 Global and resolved only suppression… Global suppression 0.53 Data H1 preliminary, suppression of NLO resolved component 0.3, (see KK paper) H1 lower Et cut scenario No E t dependence but prize is worse agreement data&NLO for x γ and also for other distributions!!!

Low x workshop, Kolimpari22 Summary new H1 dijet photoproduction data – older H1 results confirmed – within errors is gap survival probability (GSP) ~ 0.5. in higher E t cut scenario (similar to ZEUS) GSP is ~ 0.6, more close to ZEUS results. hint that GSP is dependent on E t of the leading jet, for low E t jets seems to be suppression more significant. the evidence that GSP is not different for direct and resolved events remains (originally not expected ) the problem are rather the theoretical uncertainties than the lack of experimental results! (see huge scale uncertainties). important for LHC predictions….(depend on DPDFs from HERA, and GSP)

Low x workshop, Kolimpari23 What DPDF is the „best“? The most sensitive variable → z IP Fits 2006 A,B valid only to z IP = 0.8 Fit 2007 jets to z IP = 0.9 Poorly constraint DPDFs give large uncertainties at large z IP. Fits 2006 A and 2007 Jets represent extremes. Fit 2006 B is in the middle…. Lower E t cut scenario Higher E t cut scenario