In-Medium Studies of Omega, Nucleon and Open Charm with QCD Sum Rules Ronny Thomas Dresden, September 2007 Forschungszentrum Dresden-Rossendorf / TU Dresden.

Slides:



Advertisements
Similar presentations
23 Jun. 2010Kenji Morita, GSI / XQCD20101 Mass shift of charmonium near QCD phase transition and its implication to relativistic heavy ion collisions Kenji.
Advertisements

Su Houng Lee 1. Hadrons with one heavy quark 2. Multiquarks with one heavy quark 3. Quarkonium Arguments based on two point function  can be generalized.
Su Houng Lee 1. Mesons with one heavy quark 2. Baryons with one heavy quark 3. Quarkonium Arguments based on two point function  can be generalized to.
Koichi Hattori, RBRC Hadron and Hadron Interactions in QCD Mar. 9th, 2015 Charmonium spectroscopy in strong magnetic fields by QCD sum rules.
Bremsstrahlung* B. Kämpfer Research Center Dresden-Rossendorf Technical University Dresden * braking radiation, free-free radiation, * discovered by Nikola.
Helmholtz International Center for Helmholtz International Center for FAIR Effective Theories for Hadrons Stefan Leupold Institut für Theoretische Physik,
QCD Equation of State - Impact on elliptic flow and transverse momentum spectra Marcus Bluhm Forschungszentrum Dresden-Rossendorf Comparison with lattice.
Nuclear Symmetry Energy from QCD Sum Rule Phys.Rev. C87 (2013) Recent progress in hadron physics -From hadrons to quark and gluon- Feb. 21, 2013.
Nuclear Symmetry Energy from QCD Sum Rule Heavy Ion Meeting , April 13, 2012 Kie Sang JEONG Su Houng LEE (Theoretical Nuclear and Hadron Physics.
New Frontiers in QCD, October 28th, 2011 Based on K. Kim, D. Jido, S.H. Lee PRC 84(2011) K. Kim, Y. Kim, S. Takeuchi, T. Tsukioka PTP 126(2011)735.
Charm hadrons in nuclear medium S. Yasui (KEK) K. Sudoh (Nishogakusha Univ.) “Hadron in nucleus” 31 Nov. – 2 Dec arXiv:1308:0098 [hep-ph]
In-medium hadrons and chiral symmetry G. Chanfray, IPN Lyon, IN2P3/CNRS, Université Lyon I The Physics of High Baryon Density IPHC Strasbourg, september.
Su Houng Lee with Kie Sang Jeong 1. Few words on Nuclear Symmetry Energy 2. A QCD sum rule method 3. Preliminary results Nuclear Symmetry Energy from QCD.
Mass modification of heavy-light mesons in spin-isospin correlated matter Masayasu Harada (Nagoya Univ.) at Mini workshop on “Structure and production.
XI th International Conference on Quark Confinement and the Hadron Petersburg, Russia Philipp Gubler (RIKEN, Nishina Center) Collaborator:
B. Kampfer I Institute of Radiation Physics I Member of the Helmholtz Association page 1 B. Kampfer I Institute of Radiation Physics I
B. Kampfer I Institute of Radiation Physics I Member of the Helmholtz Association page 1 B. Kampfer I Institute of Radiation Physics I
Hadron to Quark Phase Transition in the Global Color Symmetry Model of QCD Yu-xin Liu Department of Physics, Peking University Collaborators: Guo H., Gao.
Chiral Symmetry Restoration and Deconfinement in QCD at Finite Temperature M. Loewe Pontificia Universidad Católica de Chile Montpellier, July 2012.
MEM analysis of the QCD sum rule and its Application to the Nucleon spectrum Tokyo Institute of Technology Keisuke Ohtani Collaborators : Philipp Gubler,
Eigo Shintani (KEK) (JLQCD Collaboration) KEKPH0712, Dec. 12, 2007.
Beta-function as Infrared ``Phenomenon” RG-2008 (Shirkovfest) JINR, Dubna, September Oleg Teryaev JINR.
F. S. N., M. Nielsen IFUSP (São Paulo) BRAZIL Charm hadronic form factors with QCD sum rules Motivation Conclusion Results on form factors Application:
Review of recent highlights in lattice calculations at finite temperature and finite density Péter Petreczky Symmetries of QCD at T>0 : chiral and deconfinement.
Pion mass difference from vacuum polarization E. Shintani, H. Fukaya, S. Hashimoto, J. Noaki, T. Onogi, N. Yamada (for JLQCD Collaboration) December 5,
Nuclear Symmetry Energy from QCD Sum Rule The 5 th APFB Problem in Physics, August 25, 2011 Kie Sang JEONG Su Houng LEE (Theoretical Nuclear and Hadron.
Hunting Medium Modifications of the Chiral Condensate B. Kämpfer Research Center Rossendorf/Dresden Technical University Dresden with S. Zschocke, R.
Masayasu Harada (Nagoya Univ.) based on (mainly) M.H. and K.Yamawaki, Phys. Rev. Lett. 86, 757 (2001) M.H. and C.Sasaki, Phys. Lett. B 537, 280 (2002)
Nov. 12, HAPHY. A QCD sum rule analysis of the PLB 594 (2004) 87, PLB 610 (2005) 50, and hep-ph/ Hee-Jung Lee Vicente Vento (APCTP & U. Valencia)
Modification of nucleon spectral function in the nuclear medium from QCD sum rules Collaborators: Philipp Gubler(ECT*), Makoto Oka Tokyo Institute of Technology.
The phi meson in nuclear matter - recent result from theory - Talk at ECT* Workshop “New perspectives on Photons and Dileptons in Ultrarelativistic Heavy-Ion.
Masayasu Harada (Nagoya 理論センター研究会 「原子核・ハドロン物 理」 (August 11, 2009) based on M.H. and C.Sasaki, arXiv: M.H., C.Sasaki and W.Weise, Phys.
1 Heavy quark system in vacuum and in medium Su Houng Lee In collaboration with Kenji Morita Also, thanks to group members: Present: T. Song, K.I. Kim,
Quark-gluon correlation inside the B-meson from QCD sum rules based on heavy quark effective theory Tetsuo Nishikawa (Ryotokuji U) Kazuhiro Tanaka (Juntendo.
Spectral functions of mesons at finite temperature/density Talk at the 31 st Reimei workshop on hadron physics in extreme conditions at J-PARC, Tokai,
And Mesons in Strange Hadronic Medium at Finite Temperature and Density Rahul Chhabra (Ph.D student) Department Of Physics NIT Jalandhar India In cooperation.
Cosmological constant Einstein (1917) Universe baryons “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960)
Helmholtz International Summer School, Dubna, 24 July 2008 Pion decay constant in Dense Skyrmion Matter Hee-Jung Lee ( Chungbuk Nat’l Univ.) Collaborators.
1 Meson mass in nuclear medium Su Houng Lee Thanks to: Hatsuda + former collaborators + and to Kenji Morita(GSI) and Taesoo Song(A&M) 1.Phase transition,
Pentaquark decay width in QCD sum rules F.S. Navarra, M. Nielsen and R.R da Silva University of São Paulo, USP Brazil (  decay width) hep-ph/ (
ANALYSES OF D s * DK (B s * BK) VERTICES J. Y. Süngü, Collaborators: K. Azizi * and H. Sundu 2 nd International Conference on Particle Physics in Memoriam.
Beijing, QNP091 Matthias F.M. Lutz (GSI) and Madeleine Soyeur (Saclay) Irfu/SPhN CEA/ Saclay Irfu/SPhN CEA/ Saclay Dynamics of strong and radiative decays.
Nuclear Matter Density Dependence of Nucleon Radius and Mass and Quark Condensates in the GCM of QCD Yu-xin Liu Department of Physics, Peking University.
ATHIC 2008, Tsukuba Kenji Morita, Yonsei University Charmonium dissociation temperatures from QCD sum rules Kenji Morita Institute of Physics and Applied.
Recent results from QCD sum rule analyses based on the maximum entropy method International Symposium on Chiral Symmetry in Hadrons and
Exact vector channel sum rules at finite temperature Talk at the ECT* workshop “Advances in transport and response properties of strongly interacting systems”
Theoretical Calculation for neutron EDM Natsumi Nagata Based on J. Hisano, J. Y. Lee, N. Nagata, Y. Shimizu, Phys. Rev. D 85 (2012) , K. Fuyuto,
Nature of f 0 (1370), f 0 (1500) and f 0 (1710) within the eLSM Stanislaus Janowski in collaboration with F. Giacosa, D. Parganlija and D. H. Rischke Stanislaus.
Reevaluation of Neutron Electric Dipole Moment with QCD Sum Rules Natsumi Nagata Nagoya University National Taiwan University 5 November, 2012 J. Hisano,
Nuclear Symmetry Energy in QCD degree of freedom Phys. Rev
A novel probe of Chiral restoration in nuclear medium
mesons as probes to explore the chiral symmetry in nuclear matter
Hadron modifications seen with electromagnetic probes
QCD condensates and phi meson spectral moments in nuclear matter
Mesons in medium and QCD sum rule with dim 6 operators
Scalar Meson σ(600) in the QCD Sum Rule
Strangeness and charm in hadrons and dense matter, YITP, May 15, 2017
Physics Opportunities with heavy quark system at FAIR
The φ meson in nuclear matter and the strangeness content of the nucleon Philipp Gubler, JAEA P. Gubler and K. Ohtani, Phys. Rev. D 90, (2014).
R.R. Silva, M.E. Bracco, S.H. Lee, M. Nielsen
有限密度・ 温度におけるハドロンの性質の変化
The Operator Product Expansion Beyond Perturbation Theory in QCD
Reconsideration of the
Towards Understanding the In-medium φ Meson with Finite Momentum
The phi meson at finite density from a QCD sum rules + MEM approach
Scalar D mesons in nuclear matter
QCD和則とMEMを用いた有限密度中のvector mesonの研究の現状と最近の発展
Hadrons in Nuclear Matter: Sensors of the QCD Vacuum?
Theory on Hadrons in nuclear medium
Presentation transcript:

In-Medium Studies of Omega, Nucleon and Open Charm with QCD Sum Rules Ronny Thomas Dresden, September 2007 Forschungszentrum Dresden-Rossendorf / TU Dresden  In-Medium Modification of Hadrons: , N, D  QCD Sum Rules  Four-Quark Condensates work with T. Hilger, S. Zschocke and B. Kämpfer supported by BMBF, GSI, EU, Helmholtz

In-Medium Modifications QCD Sum Rules Universal CONDENSATES, … QCD vacuum |  temperature > 0 density > 0 Analogy: Stark & Zeemann effects

Chiral condensate Zschocke et al (2002) Gluon condensate Catalog of four-quark condensates … Mixed quark-gluon condensate (PCAC)Trace anomaly

 in medium  implies strong density dependence of specific four-quark condensate combinations (  In-medium shift  HADES) First moment RT, Zschocke, Kämpfer, PRL (2005)    00   Nb (A=93)    00   LH 2 (A=1) „in-medium“  + A → A‘ +  (→  0 +  ) CB-TAPS Trnka, Metag et al, PRL (2005) First moment: … Brown-Rho scaling  change of QCD vacuum

Dispersion Relation Next talk: T. Hilger Aspects of the OPE Current-current correlator  meson: QCD Sum Rules Shifman, Vainshtein, Zakharov (1979) Operator Product Expansion (OPE) Hadronic side

Twice subtracted, Borel transformed dispersion relation CiCi Wilson coefficients CONDENSATES Operator product expansion small larger FOUR-QUARK CONDENSATES x

Catalog of Four-Quark Condensates FIERZ Vacuum: 5 Medium: 5+5 time, parity reversal invariance, … One flavor:  nucleon no inverse: but implies relations: Two flavors: Vacuum: = 20 Medium: = 44 → flavor symmetry: 10 (20)

n / n 0  med Factorization and beyond: Four-Quark Condensates Chiral Symmetry: invariant → order parameter  N (vacuum) invariant not V-A not invariant

Weighted dispersion relation Parametrization of hadronic side: Furnstahl, Griegel, Cohen, PRC (1992) → Sum rules in pole ansatz: Nucleon in medium moments: condensates RT, Hilger, Kämpfer, NPA (2007)

3 coupled sum rule equations: Analysis: Nucleon in medium * Drukarev et al, PRD (2003) ** Plohl, Fuchs, PRC (2006) four-quark condensates

Scalar self-energy Vector self-energy Numerical impact of density dependence of combined four-quark condensates:

opposite effects Example for fine-tuned set Vector, scalar self-energies Analytical estimates: In-medium Ioffe approximation:  N

Comparison:  in medium Zschocke, Pavlenko, Kämpfer, PLB (2003)

Open Charm: D CBM and FAIR D + similar to K MeV at saturation density D meson in medium: Scheinast et al (KaoS), PRL (2006) D +, K - dc, us D -, K + dc, us Morath, Weise (2001) ~ 30 … 50 MeV Hayashigaki (2000) ~ - ( 0 … 50 ) MeV at saturation density Zschocke (2005) ?

Example of Operator Product Expansion for D-meson: (Diploma thesis T. Hilger) mixing of QCD condensates under renormalization amplifier

 catalog of four-quark condensates  combinations of in-medium four-quark condensates:  → strong density dependence N → some density dependence  different sum rules → no factorization of combined four-quark condensates → combinations like e.g. may serve as further order parameters of chiral symmetry breaking  further hadrons probe other condensates: D → CBM, PANDA Conclusion Modified QCD vacuum

Ioffe interpolating field: - interpolating field not unique - inclusion of derivatives Nucleon ci:ci: Braun, Schäfer et al, PLB (1993) t = -1 : (for vacuum)

Nucleon in vacuum full QSR Chiral condensate

QCD Sum Rules: 3 equations

Gross-Boelting, Fuchs, Fäßler, NPA (1999)  weak density dependence of specific four-quark condensate combinations Drukarev, Fäßler et al, PRC (2004): - nucleon matrix elements of four-quark operators for the nucleon structures → weak density dependence Lattice: Göckeler, Schäfer et al, NPB (2002) ← small impact 3 coupled sum rule equations

Threshold dependence Analysis: Nucleon in medium