Introduction1-1 Data Communications and Computer Networks Chapter 6 CS 3830 Lecture 31 Omar Meqdadi Department of Computer Science and Software Engineering.

Slides:



Advertisements
Similar presentations
Hash Functions A hash function takes data of arbitrary size and returns a value in a fixed range. If you compute the hash of the same data at different.
Advertisements

Internet and Intranet Protocols and Applications Lecture 9a: Secure Sockets Layer (SSL) March, 2004 Arthur Goldberg Computer Science Department New York.
Cryptography. 8: Network Security8-2 The language of cryptography symmetric key crypto: sender, receiver keys identical public-key crypto: encryption.
Digital Signatures and Hash Functions. Digital Signatures.
Public Key Cryptography & Message Authentication By Tahaei Fall 2012.
1 Counter-measures Threat Monitoring Cryptography as a security tool Encryption Digital Signature Key distribution.
Lecture 25 Secure Communications CPE 401 / 601 Computer Network Systems slides are modified from Jim Kurose & Keith Ross and Dave Hollinger.
EEC 693/793 Special Topics in Electrical Engineering Secure and Dependable Computing Lecture 6 Wenbing Zhao Department of Electrical and Computer Engineering.
1 Counter-measures Threat Monitoring Cryptography as a security tool Encryption Authentication Digital Signature Key distribution.
1 Key Establishment Symmetric key problem: How do two entities establish shared secret key in the first place? Solutions: Deffie-Hellman trusted key distribution.
Chapter 8 Network Security Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
8-1 What is network security? Confidentiality: only sender, intended receiver should “understand” message contents m sender encrypts message m receiver.
8: Network Security – Integrity, Firewalls.
Kemal AkkayaWireless & Network Security 1 Department of Computer Science Southern Illinois University Carbondale CS 591 – Wireless & Network Security Lecture.
Network Security understand principles of network security:
1 Key Establishment Symmetric key problem: How do two entities establish shared secret key over network? Solution: trusted key distribution center (KDC)
Network Security – Part 2 V.T. Raja, Ph.D., Oregon State University.
Overview of Digital Signatures Introduction To Networks and Communications (CS 555) Presented by Bharath Kongara.
Computer Science Public Key Management Lecture 5.
Secure Systems Research Group - FAU Patterns for Digital Signature using hashing Presented by Keiko Hashizume.
Chapter 31 Network Security
31.1 Chapter 31 Network Security Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 5 Digital Signatures MSc. NGUYEN CAO DAT Dr. TRAN VAN HOAI 1.
Behzad Akbari Spring In the Name of the Most High.
AQA Computing A2 © Nelson Thornes 2009 Section Unit 3 Section 6.4: Internet Security Digital Signatures and Certificates.
1-1 1DT066 Distributed Information System Chapter 8 Network Security.
8-1Network Security Chapter 8 roadmap 8.1 What is network security? 8.2 Principles of cryptography 8.3 Message integrity, authentication.
 This Class  Chapter 8. 2 What is network security?  Confidentiality  only sender, intended receiver should “understand” message contents.
Network Security – Part 2 (Continued) Lecture Notes for May 8, 2006 V.T. Raja, Ph.D., Oregon State University.
Cryptography, Authentication and Digital Signatures
Computer and Internet Security. Introduction Both individuals and companies are vulnerable to data theft and hacker attacks that can compromise data,
Chapter 8, slide: 1 ECE/CS 372 – introduction to computer networks Lecture 18 Announcements: r Final exam will take place August 13 th,2012 r HW4 and Lab5.
4 th lecture.  Message to be encrypted: HELLO  Key: XMCKL H E L L O message 7 (H) 4 (E) 11 (L) 11 (L) 14 (O) message + 23 (X) 12 (M) 2 (C) 10 (K) 11.
23-1 Last time □ P2P □ Security ♦ Intro ♦ Principles of cryptography.
ICT 6621 : Advanced NetworkingKhaled Mahbub, IICT, BUET, 2008 Lecture 11 Network Security (1)
NDSU Lunchbytes "Are They Really Who They Say They Are?" Digital or Electronic Signature Information Rick Johnson, Theresa Semmens, Lorna Olsen April 24,
Network Security7-1 CIS3360: Chapter 8: Cryptography Application of Public Cryptography Cliff Zou Spring 2012 TexPoint fonts used in EMF. Read the TexPoint.
Upper OSI Layers Natawut Nupairoj, Ph.D. Department of Computer Engineering Chulalongkorn University.
8-1 Chapter 8 Security Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 part 2: Message integrity.
31.1 Chapter 31 Network Security Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 Network Security Basics. 2 Network Security Foundations: r what is security? r cryptography r authentication r message integrity r key distribution.
31.1 Chapter 31 Network Security Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Public Key Infrastructure (PKI) Chien-Chung Shen
Computer and Network Security - Message Digests, Kerberos, PKI –
Network Security7-1 Chapter 8: Network Security Chapter goals: r Understand principles of network security: m cryptography and its many uses beyond “confidentiality”
Lecture 11 Overview. Digital Signature Properties CS 450/650 Lecture 11: Digital Signatures 2 Unforgeable: Only the signer can produce his/her signature.
Lecture 9 Overview. Digital Signature Properties CS 450/650 Lecture 9: Digital Signatures 2 Unforgeable: Only the signer can produce his/her signature.
 Last Class  Chapter 7 on Data Presentation Formatting and Compression  This Class  Chapter 8.1. and 8.2.
Lecture 22 Network Security (cont) CPE 401 / 601 Computer Network Systems slides are modified from Dave Hollinger slides are modified from Jim Kurose,
8-1 Chapter 8 Security Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Network Security Chapter 8 roadmap 8.1 What is network security? 8.2 Principles of cryptography (confidentiality) 8.3 Message integrity 8.4 End-point authentication.
Public-Key Cryptography and Message Authentication
Digital Signatures Cryptographic technique analogous to hand-written signatures. sender (Bob) digitally signs document, establishing he is document owner/creator.
Computer Communication & Networks
Chapter 7 Network Security
Basic Network Encryption
NET 311 Information Security
Digital Signatures Cryptographic technique analogous to hand-written signatures. sender (Bob) digitally signs document, establishing he is document owner/creator.
1DT057 Distributed Information System Chapter 8 Network Security
Intro to Cryptography Some slides have been taken from:
Protocol ap1.0: Alice says “I am Alice”
Encryption INST 346, Section 0201 April 3, 2018.
Digital Signatures Cryptographic technique analogous to hand-written signatures. sender (Bob) digitally signs document, establishing he is document owner/creator.
Digital Signatures Cryptographic technique analogous to hand-written signatures. sender (Bob) digitally signs document, establishing he is document owner/creator.
Basic Network Encryption
Digital Signatures Cryptographic technique analogous to hand-written signatures. sender (Bob) digitally signs document, establishing he is document owner/creator.
Security: Integrity, Authentication, Non-repudiation
Digital Signatures Cryptographic technique analogous to hand-written signatures. sender (Bob) digitally signs document, establishing he is document owner/creator.
Chapter 8 roadmap 8.1 What is network security?
Presentation transcript:

Introduction1-1 Data Communications and Computer Networks Chapter 6 CS 3830 Lecture 31 Omar Meqdadi Department of Computer Science and Software Engineering University of Wisconsin-Platteville

8: Network Security8-2 Message Authentication Code m s (shared secret) (message) H(. ) H(m+s) public Internet append m H(m+s) s compare m H(m+s) H(. ) H(m+s) (shared secret)

8: Network Security8-3 MACs in practice r MD5 hash function widely used (RFC 1321) m computes 128-bit MAC in 4-step process. m arbitrary 128-bit string x, appears difficult to construct msg m whose MD5 hash is equal to x recent (2005) attacks on MD5 r SHA-1 is also used m US standard [ NIST, FIPS PUB 180-1] m 160-bit MAC m Vulnerable to theoretical attacks

8: Network Security8-4 Digital Signatures cryptographic technique analogous to hand- written signatures. r sender (Bob) digitally signs document, establishing he is document owner/creator. r verifiable, nonforgeable: recipient (Alice) can prove to someone that Bob, and no one else (including Alice), must have signed document

8: Network Security8-5 Digital Signatures simple digital signature for message m: r Bob “signs” m by encrypting with his private key K B, creating “signed” message, K B (m) - - Dear Alice Oh, how I have missed you. I think of you all the time! …(yada yada yada) Bob Bob’s message, m public key encryption algorithm Bob’s private key K B - K B - Bob’s message, m, signed (encrypted) with his private key (m)

8: Network Security8-6 Digital Signatures (more) r suppose Alice receives msg m, digital signature K B (m) r Alice verifies m signed by Bob by applying Bob’s public key K B to K B (m) then checks K B (K B (m) ) = m. r if K B (K B (m) ) = m, whoever signed m must have used Bob’s private key Alice thus verifies that: ü Bob signed m. ü No one else signed m. ü Bob signed m and not m’.

8: Network Security8-7 large message m H: hash function H(m) digital signature (encrypt) Bob’s private key K B - + Bob sends digitally signed message: Alice verifies signature and integrity of digitally signed message: K B (H(m)) - encrypted msg K B (H(m)) - encrypted msg large message m H: hash function H(m) digital signature (decrypt) H(m) Bob’s public key K B + equal ? Digital signature = signed MAC

8: Network Security8-8 Public Key Certification public key problem: r When Alice obtains Bob’s public key (from web site, , etc.), how does she know it is Bob’s public key, not Trudy’s? solution: r trusted certification authority (CA)

8: Network Security8-9 Certification Authorities r Certification Authority (CA): binds public key to particular entity, E. r E registers its public key with CA. m E provides “proof of identity” to CA. m CA creates certificate binding E to its public key. m certificate containing E’s public key digitally signed by CA: CA says “This is E’s public key.” Bob’s public key K B + Bob’s identifying information digital signature (encrypt) CA private key K CA - K B + certificate for Bob’s public key, signed by CA - K CA (K ) B +

8: Network Security8-10 Certification Authorities r when Alice wants Bob’s public key: m gets Bob’s certificate (Bob or elsewhere). m apply CA’s public key to Bob’s certificate, get Bob’s public key Bob’s public key K B + digital signature (decrypt) CA public key K CA + K B + - K (K ) B +